Skip to main content
Log in

Aluminum hyperaccumulation in angiosperms: A review of its phylogenetic significance

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Aluminum phytotoxicity and genetically based aluminum resistance has been studied intensively during recent decades because aluminum toxicity is often the primary factor limiting crop productivity on acid soils. Plants that grow on soils with high aluminum concentrations employ three basic strategies to deal with aluminum stress. While excluders effectively prevent aluminum from entering their aerial parts over a broad range of aluminum concentration in the soil, hyperaccumulators take up aluminum in their aboveground tissues in quantities above 1000 ppm; that is, far exceeding those present in the soil or in the nonaccumulating species growing nearby. In between these two extremes are indicator species, representing intermediate responses.

A list of aluminum hyperaccumulators in angiosperms is compiled on the basis of data in the literature. Aluminum hyperaccumulators include mainly woody, perennial taxa from tropical regions. Recent molecular phylogenies are used to evaluate the systematic and phylogenetic implications of the character. As was hypothesized earlier, our preliminary conclusions support the primitive status of aluminum hyperaccumulation. According to the APG classification system, this phytochemical character is found in approximately 45 families, which belong largely to the eudicots. Aluminum hyperaccumulators are particularly common in basal branches of fairly advanced groups such as rosids (Myrtales, Malpighiales, Oxalidales) and asterids (Cornales, Ericales, Gentianales, Aquifoliales), but the character has probably been lost in the most derived taxa. The feature is suggested to characterize approximately 18 families (e.g., Anisophylleaceae, Cunoniaceae, Diapensiaceae, Memecylaceae, Monimiaceae, Rapateaceae, Siparunaceae, Vochysiaceae, and several monogeneric families). In 27 other families, aluminum hyperaccumulation is restricted to subfamilies, tribes, or genera. Further analyses of a broader range of taxa are needed to examine the origin and taxonomic significance of aluminum hyperaccumulation in several clades. Aluminum hyperaccumulation provides an evolutionary model system for the integration of different biological disciplines, such as systematics, ecology, biogeography, physiology, and biochemistry. Therefore, multidisciplinary approaches are needed to make further progress in understanding the biology of aluminum hyperaccumulators.

Résumé

La phytotoxicité et la résistance génétique à l’aluminium ont été étudiées intensivement pendant les dernières décennies en raison du rôle important que joue la toxicité à l’aluminium comme facteur limitant la production des plantes sur les terrains acides. Les végétaux des terres acides ayant une haute concentration d’aluminium, survivent grace à trois stratégies. Les plantes à exclusion d’aluminium empêchent l’élément d’entrer dans les tissus aériens à partir d’un sol à fortes concentrations d’aluminium. Les plantes hyperaccumulatrices d’aluminium cependant contiennent une concentration d’aluminium plus haute que 1000 ppm dans leurs tiges et feuilles, dépassant de beaucoup les concentrations du sol ou des plantes avoisinantes nonaccumulatives. Entre ces deux groupes extrèmes, il y a les plantes indicatrices d’aluminium qui ne font aucun effort pour exclure ou accumuler l’aluminium.

Nous présentons une liste d’angiospermes hyperaccumulateurs d’aluminium sur base d’une analyse des données de la littérature. Les plantes hyperaccumulatrices sont surtout des plantes ligneuses et pérennes des régions tropicales. Nous utilisons les nouvelles phylogenèses moléculaires pour évaluer la signification systématique et phylogénétique du signal phytochimique. Comme il avait été supposé préalablement, nos conclusions préliminaires confirment le statut primitif de l’hyperaccumulation d’aluminium. Selon le système de classification APG, cette caractéristique phytochimique a été rapportée dans environs 45 familles, qui appartiennent surtout aux eudicots. Les familles hyperaccumulatrices d’aluminium sont surtout présentes dans les branches basales de groupes généralement évolués comme les rosides (Myrtales, Malpighiales, Oxalidales) et les astendes (Cornales, Ericales, Gentianales, Aquifoliales), mais le caractère a probablement disparu dans les groupes les plus dérivés. La caractéristique semble être constante dans presque 18 familles, comme les Anisophylleacées, Cunoniacées, Diapensiacées, Memecylacées, Monimiacées, Rapateacées, Siparunacées, Vochysiacées et quelques familles monogénériques. Dans 27 autres familles, l’hyperaccumulation d’aluminium est limitée aux sous-familles, tribus ou genres. De nouvelles analyses de divers taxa sont nécessaires pour déterminer l’origine et la signification taxonomique dans certains groupes de plantes. Finalement, l’hyperaccumulation d’aluminium est une excellente donnée permettant d’intégrer différentes disciplines biologiques comme la botanique systématique, l’écologie, la biogéographie, la physiologie et la biochimie. Seulement une approche multidisciplinaire permettra de comprendre tous les secrets des plantes qui accumulent l’aluminium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, R. C. 1943. Influence of aluminum on the flower colorof Hydrangea macrophylla DC. Contr. Boyce Thompson Inst. Pl. Res. 13: 221–242.

    CAS  Google Scholar 

  • Alva, A. K., D. G. Edwards, C. J. Asher &F. P. Blarney. 1986. Relationships between root length of soybean and calculated activities of aluminum monomers in nutrient solution. Soil Sci. Soc. Amer. J. 50: 959–962.

    CAS  Google Scholar 

  • Andersson, M. E. 1992. Effects of pH and aluminium on growth ofGalium odoratum (L.) Scop, in flowing solution culture. Environm. & Exp. Bot. 32: 497–504.

    Article  CAS  Google Scholar 

  • —. 1993. Aluminium toxicity as a factor limiting the distribution ofAllium ursinum (L.). Ann. Bot. (London) 72: 607–611.

    Article  CAS  Google Scholar 

  • Aniol, A. 1984. Induction of aluminum tolerance in wheat seedlings by low doses of aluminum in the nutrient solution. Pl. Physiol. (Lancaster) 76: 551–555.

    CAS  Google Scholar 

  • —. 1990. Genetics of tolerance to aluminum in wheat (Tritcum aestivum L.). Pl. & Soil 123: 223–227.

    Article  CAS  Google Scholar 

  • — &J. P. Gustafson. 1984. Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Canad. J. Genet. Cytol. 26: 701–705.

    Google Scholar 

  • APG (Angiosperm Phytogeny Group). 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553.

    Article  Google Scholar 

  • Ashida, J., N. Higachi &T. Kikuchi. 1963. An electron microscopic study on copper precipitation by copper resistant yeast cells. Protoplasma 57: 27–32.

    Article  CAS  Google Scholar 

  • Baas, P., E. Oosterhoud &C. J. L. Scholtes. 1982. Leaf anatomy and classification of the Olacaceae,Octoknema andErythropalum. Allertonia 3: 155–210.

    Google Scholar 

  • Backlund, M., B. Oxelman &B. Bremer. 2000. Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. Amer. J. Bot. 87: 1029–1043.

    Article  CAS  Google Scholar 

  • Baker, A. J. M. 1981. Accumulators and excluders: Strategies in the response of plants to heavy metals. J. Pl. Nutr. 3: 643–654.

    CAS  Google Scholar 

  • —. 1987. Metal tolerance. New Phytol. 106 (Suppl.): 93–111.

    CAS  Google Scholar 

  • — &R. R. Brooks. 1989. Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biorecovery 1: 81–126.

    CAS  Google Scholar 

  • —— &R. Reeves. 1989. Growing for gold… and copper… and zinc. New Sci. 1603: 44–48.

    Google Scholar 

  • —,J. Proctor, M. M. J. van Balgooy &R. D. Reeves. 1992. Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. Pp. 291–304in A. J. M Baker, J. Proctor, & R. D. Reeves (eds.), The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK.

    Google Scholar 

  • Bennet, R. J., C. M. Breen &M. V. Fey. 1985. The primary site of aluminium injury in the root ofZea mays. S. African J. PI. Soil 2: 1–7.

    CAS  Google Scholar 

  • Blarney, F. C. P., D. C. Edmeades &D. M. Wheeler. 1990. Role of root cation-exchange capacity in differential aluminium tolerance ofLotus species. J. Pl. Nutr. 13: 729–744.

    Google Scholar 

  • Bradley, R., A. J. Burt &D. J. Read. 1981. Mycorrhizal infection and resistance to heavy metal toxic-ity inCalluna vulgaris. Nature 292: 335–337.

    Article  CAS  Google Scholar 

  • ———. 1982. The biology of mycorrhiza in the Ericaceae, VIII. The role of mycor-rhizal infection in heavy metal tolerance. New Phytol. 91: 197–209.

    Article  CAS  Google Scholar 

  • Bremer, B., R. K. Jansen, B. Oxelman, M. Backlund, H. Lantz &K. Ki-Joong. 1999. More charac-ters or more taxa for a robust phylogeny: Case study from the coffee family (Rubiaceae). Syst. Biol. 48: 413–435.

    Article  PubMed  CAS  Google Scholar 

  • Brenan, J. P. M. 1953.Soyauxia, a second genus of Medusandraceae. Kew Bull. 1953: 507–511.

    Article  Google Scholar 

  • Broadley, M. R., N. J. Willey, J. C. Wilkins, A. J. M. Baker, A. Mead &P. J. White. 2001. Phyloge-netic variation in heavy metal accumulation in angiosperms. New Phytol. 152: 9–27.

    Article  CAS  Google Scholar 

  • Brooks, R. R., J. Lee, R. D. Reeves &T. Jaffré. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 7: 49–57.

    Article  CAS  Google Scholar 

  • Carver, B. F. &J. D. Ownby. 1995. Acid soil tolerance in wheat. Advances Agron. 54: 117–173.

    Article  CAS  Google Scholar 

  • Chanderbali, A. S., H. van der Werf &S. S. Renner. 2001. Phylogeny and historical biogeography of Lauraceae: Evidence from the chloroplast and nuclear genomes. Ann. Missouri Bot. Gard. 88: 104–134.

    Article  Google Scholar 

  • Chase, M. W., D. E. Soltis, P. S. Soltis, P. J. Rudall, M. F. Fay, W. H. Hahn, S. Sullivan, J. Joseph, M. Molvray, P. J. Kores, T. J. Givnish, K. J. Sytsma &J. C. Pires. 2000. Higher-level system-atics of the monocotyledons: An assessment of current knowledge and a new classification. Pp. 3–16in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. CSIRO, Collingwood, Australia.

    Google Scholar 

  • —,S. Zmarzty, M. D. Lledó, K. J. Wurdack, S. M. Swensen &M. F. Fay. 2002. When in doubt, put it in Flacourtiaceae: A molecular phylogenetic analysis based on plastid rbcL DNA sequences. Kew Bull. 57: 141–181.

    Article  Google Scholar 

  • Chenery, E. M. 1946. AreHydrangea flowers unique? Nature 158: 240–241.

    Article  Google Scholar 

  • —. 1948a. Aluminium in plants and its relation to plant pigments. Ann. Bot. (London) 12: 121–136.

    CAS  Google Scholar 

  • —. 1948b. Aluminium in the plant world, I. General survey in dicotyledons. Kew Bull. 1948: 173–183.

    Article  Google Scholar 

  • —. 1949. Aluminium in the plant world, II. Monocotyledons and gymnosperms; III. Cryptogams. Kew Bull. 1949: 463–473.

    Article  Google Scholar 

  • —. 1955. A preliminary study of aluminium and the tea bush. Pl. & Soil 6: 174–200.

    Article  CAS  Google Scholar 

  • — &K. R. Sporne. 1976. A note on the evolutionary status of aluminium-accumulators among dicotyledons. New Phytol. 76: 551–554.

    Article  CAS  Google Scholar 

  • Clausing, G. &S. S. Renner. 2001. Molecular phylogenetics of Melastomataceae and Memecylaceae: Implications for character evolution. Amer. J. Bot. 88: 486–498.

    Article  CAS  Google Scholar 

  • —,K. Meyer &S. S. Renner. 2000. Correlations among fruit traits and evolution of different fruits within Melastomataceae. Bot. J. Linn. Soc. 133: 303–326.

    Google Scholar 

  • Conti, E., A. Litt &K. J. Sytsma. 1996. Circumscription of Myrtales and their relationships to other rosids: Evidence from rbcL sequence data. Amer. J. Bot. 83: 221–233.

    Article  Google Scholar 

  • ——,P. G. Wilson, S. A. Graham, B. G. Briggs, A. S. Johnson &K. J. Sytsma. 1997. Interfamilial relationships in Myrtales: Molecular phylogeny and patterns of morphological evolu-tion. Syst. Bot. 22: 629–647.

    Article  Google Scholar 

  • Cronquist, A. 1980. Chemistry in plant taxonomy: An assessment of where we stand. Pp. 1–27in F.A. Bisby, J. G. Vaughan & C. A. Wright (eds.), Chemosystematics: Principles and practice. Systemat-ics Association Spec. Vol. 16. Academic Press, London.

    Google Scholar 

  • Cuenca, G. &R. Herrera. 1987. Ecophysiology of aluminium in terrestrial plants, growing in acid and aluminium-rich tropical soils. Ann. Soc. Roy. Zool. de Belgique 117 (Suppl. 1): 57–74.

    Google Scholar 

  • —— &E. Medina. 1990. Aluminium tolerance in trees of a tropical cloud forest. Pl. & Soil 125: 169–175.

    Article  CAS  Google Scholar 

  • —— &T. Merida. 1991. Distribution of aluminium in accumulator plants by X-ray mi-croanalysis inRicheria grandis Vahl leaves from a cloud forest in Venezuela. Pl. Cell Environ. 14: 437–441.

    Article  CAS  Google Scholar 

  • Cullings, K. W. 1996. Single phylogenetic origin of ericoid mycorrhizae within the Ericaceae. Canad. J. Bot. 74: 1896–1909.

    Article  CAS  Google Scholar 

  • Dahlgren, G. 1989. The last Dahlgrenogram: System of classification of the dicotyledons. Pp. 249–260in K. Tan (ed.), Plant taxonomy, phytogeography and related subjects: The Davis & Hedge festschrift, Edinburgh Univ. Press, Edinburgh.

    Google Scholar 

  • Dahlgren, R. 1988. Rhizophoraceae and Anisophylleaceae: Summary statement, relationships. Ann. Missouri Bot. Gard. 75: 1259–1277.

    Article  Google Scholar 

  • Davis, M. A. &R. S. Boyd. 2000. Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator,Streptanthus polygaloides (Brassicaceae). New Phytol. 146: 211–217.

    Article  CAS  Google Scholar 

  • De Lima, M. L. &L. Copeland. 1994. Changes in the ultrastructure of the root tip of wheat following exposure to aluminium. Austral. J. Pl. Physiol. 21: 85–94.

    Article  CAS  Google Scholar 

  • De Medeiros, R. A. &M. Haridasan. 1985. Seasonal variations in the foliar concentrations of nutrients in some aluminium accumulating and non-accumulating species of the cerrado region of central Brazil. Pl. & Soil 88: 433–436.

    Article  Google Scholar 

  • Degenhardt, J., P. B. Larsen, S. H. Howell &L. V. Kochian. 1998. Aluminum resistance in theArabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Pl. Physiol. (Lancaster) 117: 19–27.

    Article  CAS  Google Scholar 

  • Delhaize, E., P. R. Ryan &P. J. Randall. 1993. Aluminum tolerance in wheat (Triticum aestivum L.), II. Aluminum-stimulated excretion of malic acid from root species. PI. Physiol. (Lancaster) 103: 695–702.

    CAS  Google Scholar 

  • Denny, H. J. &D. A. Wilkins. 1987. Zinc tolerance in Betula spp., IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol. 106: 545–553.

    CAS  Google Scholar 

  • Dickinson, T. A. &R. Sattler. 1974. Development of the epiphyllous inflorescence ofPhyllonoma integerrima (Turcz.) Loes.: Implications for comparative morphology. Bot. J. Linn. Soc. 69: 1–13.

    Article  Google Scholar 

  • ——. 1975. Development of the epiphyllous inflorescence ofHelwingia japonica (Helwingiaceae). Amer. J. Bot 62: 962–973.

    Article  Google Scholar 

  • Duddrige, J. &M. Wainwright. 1980. Heavy metal accumulation by aquatic fungi and reduction in viability ofGammarus pulex fed Cd2+ contaminated mycelium. Water Res. 14: 1605–1611.

    Article  Google Scholar 

  • Eriksen, B. 1993. Phylogeny of the Polygalaceae and its taxonomic implications. Pl. Syst. Evol. 186: 33–55.

    Article  Google Scholar 

  • Ernst, W. H. O., H. Schat &J. A. C. Verlkeij. 1990. Evolutionary biology of metal resistance inSilene vulgaris. Evol. Trends Pl. 4: 45–51.

    Google Scholar 

  • Exley, C. 1999. A molecular mechanism of aluminium-induced Alzheimer’s disease? J. Inorg. Biochem. 76: 133–140.

    Article  PubMed  CAS  Google Scholar 

  • —. 2000. Avoidance of aluminium by rainbow trout. Environ. Toxicol. Chem. 19: 933–939.

    Article  CAS  Google Scholar 

  • Foy, C. D., R. L. Chaney &M. C. White. 1978. The physiology of metal toxicity in plants. Annual Rev. Pl. Physiol. 29: 511–566.

    Article  CAS  Google Scholar 

  • Geoghegan, I. E. &J. I. Sprent. 1996. Aluminium and nutrient concentrations in species native to cental Brazil. Commun. Soil Sci. Pl. Anal. 27: 2925–2934.

    CAS  Google Scholar 

  • Ghaderian, S. M., A. J. E. Lyon &A. J. M. Baker. 2000. Seedling mortality of metal hyperaccumulator plants resulting from damping-off byPythium spp. New Phytol. 146: 219–224.

    Article  CAS  Google Scholar 

  • Godbold, D. L., E. Fritz &A. Hütterman. 1988. Aluminum toxicity and forest decline. Proc. Natl. Acad. Sci. U.S.A. 85: 3888–3892.

    Article  CAS  Google Scholar 

  • Hallier, H. 1922. Beiträge zur Kenntnis der Linaceae. Vide section 18: Die Pentaphylacaceen und Aluminiumpflanzen. Beih. Bot. Centralbl., Abt. 2, 39: 1–178.

    Google Scholar 

  • Haridasan, M., T. I. Paviani &I. Schiavini. 1986. Localisation of aluminium in the leaves of some aluminium accumulating species. Pl. & Soil 94: 435–437.

    Article  Google Scholar 

  • Henderson, M. &J. D. Ownby. 1991. The role of root cap mucilage secretion in aluminum tolerance in wheat. Curr. Topics PI. Biochem. & Physiol. 10: 134–141.

    CAS  Google Scholar 

  • Hillis, W. E. 2000. Vessels inCardwellia sublimis containing aluminium and magnesium salts. Int. Assoc. Wood Anat. J. 21: 121–127.

    Google Scholar 

  • — &D. de Silva. 1979. Inorganic extraneous constituents of wood. Holzforschung 33: 47–53.

    CAS  Google Scholar 

  • Hoot, S. B. &A. W. Douglas. 1998. Phylogeny of the Proteaceae based on atpB and atpB-rbcL intergenic spacer region sequences. Austral. J. Bot. 11: 301–320.

    Article  Google Scholar 

  • —,A. Culham &P. R. Crane. 1995. The utility of atpB gene sequences in resolving phylogenetic relationships: Comparison with rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann. Missouri Bot. Gard. 82: 194–207.

    Article  Google Scholar 

  • —,S. Megallon &P. R. Crane. 1999. Phylogeny of basal eudicots based on three molecular datasets: atpB, rbcL, and 18S nuclear ribosomal DNA sequences. Ann. Missouri Bot. Gard. 86: 1–32.

    Article  Google Scholar 

  • Hue, N. V., G. R. Craddock &F. Adams. 1986. Effect of organic acids on aluminum toxicity in sub-soils. Soil Sci. Soc. Amer. J. 50: 28–34.

    CAS  Google Scholar 

  • Hutchinson, G. E. 1943. The biogeochemistry of aluminum and of certain related elements. Quart. Rev. Biol. 18: 1–29.

    Article  CAS  Google Scholar 

  • —. 1945. Aluminum in soils, plants, and animals. Soil Sci. 60: 29–40.

    Article  CAS  Google Scholar 

  • — &A. Wollack. 1943. Biological accumulators of aluminum. Trans. Conn. Acad. Arts & Sci. 35: 73–128.

    CAS  Google Scholar 

  • IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. Int. Assoc. Wood Anat. Bull., n.s. 10: 219–332.

    Google Scholar 

  • Jansen, S., S. Dessein, R. Piesschaert, E. Robbrecht &E. Smets. 2000a. Aluminium accumulation in leaves of Rubiaceae: Systematic and phylogenetic implications. Ann. Bot. (London) 85: 91–101.

    Article  CAS  Google Scholar 

  • —,E. Robbrecht, H. Beeckman &E. Smets. 2000b. Aluminium accumulation in Rubiaceae: An additional character for the delimitation of the subfamily Rubioideae? Int. Assoc. Wood Anat. J. 21: 197–212.

    Google Scholar 

  • —,P. Baas &E. Smets. 2001. Vestures pits, their occurrence and systematic importance in eudicots. Taxon 55: 135–167.

    Article  Google Scholar 

  • —,T. Watanabe &E. Smets. 2002. Aluminium accumulation in leaves of 127 species in Melastomataceae, with comments on the order Myrtales. Ann. Bot. (London) 90: 53–64.

    Article  CAS  Google Scholar 

  • Johnson, L. A. S. &B. G. Briggs. 1975. On the Proteaceae: The evolution and classification of a southern family. Bot. J. Linn. Soc. 70: 83–182.

    Article  Google Scholar 

  • Kinraide, T. B. 1991. Identity of the rhizotoxic aluminium species. Pl. & Soil 134: 167–178.

    CAS  Google Scholar 

  • — &D. R. Parker. 1990. Apparent phytotoxicity of mononuclear hydroxyaluminum to four di-cotyledonous species. Physiol. Pl. (Copenhagen) 79: 283–288.

    Article  CAS  Google Scholar 

  • Kinzel, H. 1983. Influence of limestone, silicates and soil pH on vegetation. Pp. 201–244in O. L.Lange, P. S. Nobel, C. B. Osmond & H. Ziegler (eds.), Physiological plant ecology III: Responses to the chemical and biological environment. Encyclopedia of Plant Physiology, n.s., 12C. Springer-Verlag, Berlin.

    Google Scholar 

  • Kochian, L. V. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Rev. Pl. Physiol. Pl. Molec. Biol. 46: 237–260.

    Article  CAS  Google Scholar 

  • Konishi, S., S. Miyamoto &T. Taki. 1985. Stimulatory effect of aluminum on tea plants grown under low and high phosphorus supply. Soil Sci. Pl. Nutr. 31: 361–368.

    CAS  Google Scholar 

  • Krämer, U., G. W. Grime, J. A. C. Smith, C. R. Hawes &A. J. M. Baker. 1997. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plantAlyssum lesbiacum. Nucl. Instr. Meth. Physics. Res. B 130: 346–350.

    Article  Google Scholar 

  • Kukachka, B. F. &R. B. Miller. 1980. A chemical spot-test for aluminum and its value in wood iden-tification. Int. Assoc. Wood Anat. Bull., n.s. 1: 104–109.

    Google Scholar 

  • Küpper, H., F. J. Zhao &S. P. McGrath. 1999. Cellular compartmentation of zinc in leaves of the hyperaccumulatorThlaspi caerulescens. Pl. Physiol. (Lancaster) 119: 305–311.

    Article  Google Scholar 

  • Larsen, P. B., C.-Y. Tai, L. Stenzler, J. Degenhardt, S. H. Howell &L. V. Kochian. 1998. Alumi-num-resistantArabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Pl. Physiol. (Lancaster) 117: 9–18.

    Article  CAS  Google Scholar 

  • Lemke, D. E. 1988. A synopsis of Flacourtiaceae. Aliso 12: 29–43.

    Google Scholar 

  • Lindberg, S. 1990. Aluminium interactions with K+ (86Rb+) and45Ca2+ fluxes in three cultivars of sugar beet (Beta vulgaris). Physiol. Pl. (Copenhagen) 79: 275–282.

    Article  CAS  Google Scholar 

  • Lüttge, U. 1997. Physiological ecology of tropical plants. Springer-Verlag, Berlin.

    Google Scholar 

  • — &D. T. Clarkson. 1992. Mineral nutrition: Aluminium. Progr. Bot. 53: 63–77.

    Google Scholar 

  • Ma, J. F. 2000. Role of organic acids in detoxification of aluminum in higher plants. Pl. Cell Physiol. 41: 383–390.

    CAS  Google Scholar 

  • —,S. Hiradate, K. Nomoto, T. Iwashita &H. Matsumoto. 1997a. Internal detoxification mecha-nism of Al inHydrangea. Pl. Physiol. (Lancaster) 113: 1033–1039.

    CAS  Google Scholar 

  • —,S. J. Zheng &H. Matsumoto. 1997b. Specific secretion of citric acid induced by Al stress inCassia tora L. Pl. Cell Physiol. 38: 1019–1025.

    CAS  Google Scholar 

  • ———. 1997c. Detoxifying aluminium with buckwheat. Nature 390: 569–570.

    Article  Google Scholar 

  • —,S. Hiradate &H. Matsumoto. 1998. High aluminum resistance in buckwheat. Pl. Physiol. (Lancaster) 117: 753–759.

    Article  CAS  Google Scholar 

  • —,S. Taketa &Z. M. Yang. 2000. Aluminum tolerance genes on the short arm of chromosome 3 R are linked to organic acid release inTriticale. Pl. Physiol. (Lancaster) 122: 687–694.

    Article  CAS  Google Scholar 

  • —,P. R. Ryan &E. Delhaize. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends PI. Sci. 6: 273–278.

    Article  CAS  Google Scholar 

  • Macnair, M. R. 1993. The genetics of metal tolerance in vascular plants. New Phytol. 124: 541–559.

    Article  CAS  Google Scholar 

  • Marschner, H. 1991. Mechanisms of adaptation of plants to acid soils. Pl. & Soil 134: 1–20.

    CAS  Google Scholar 

  • —. 1995. Mineral nutrition of higher plants. Ed. 2. Academic Press, London.

    Google Scholar 

  • Martin, F., P. Rubini, R. Cote &I. Kottke. 1994. Aluminum polyphosphate complexes in the mycor-rhizal basidiomyceteLaccaria bicolor: A27Al-nuclear magnetic resonance study. Planta 194: 241–246.

    Article  CAS  Google Scholar 

  • Martin, R. B. 1988. Bioinorganic chemistry of aluminum. Pp. 1–57in H. Sigel & A. Sigel (eds.), Metal ions in biological systems. Vol. 24. Aluminum and its role in biology. Marcel Dekker, New York.

    Google Scholar 

  • Masunaga, T., D. Kubota, M. Hotta &T. Wakatsuki. 1998a. Mineral composition of leaves and bark in aluminum accumulators in a tropical rain forest in Indonesia. Soil Sci. Pl. Nutr. 44: 347–358.

    CAS  Google Scholar 

  • ——,U. William, M. Hotta, Y. Shinmura &T. Wakatsuki. 1998b. Spatial distribution pattern of trees in relation to soil edaphic status in tropical rain forest in West Sumatra, Indonesia, I. Distribution of accumulating trees. Tropics 7: 209–222.

    Google Scholar 

  • ——————. 1998c. Spatial distribution pattern of trees in rela-tion to soil edaphic status in tropical rain forest in West Sumatra, Indonesia, II. Distribution of non-accumulating trees. Tropics 8: 17–30.

    Article  Google Scholar 

  • Mazorra, M. A., J. J. San Jose, R. Montes, J. G. Miragaya &M. Haridasan. 1987. Aluminium concentration in the biomass of native species of the Morichals (swamp palm community) at the Orinoco Llanos, Venezuela. Pl. & Soil 102: 275–277.

    Article  CAS  Google Scholar 

  • Meeuse, A. D. J. 1990. The Euphorbiaceae auct. plur.: An unnatural taxon. Eburon, Delft.

  • Metcalfe, C. R. 1962. Notes on the systematic anatomy ofWhittonia andPeridiscus. Kew Bull. 15: 472–475.

    Article  Google Scholar 

  • — &L. Chalk. 1983. Anatomy of the dicotyledons. Vol. 2. Wood structure and conclusion of the general introduction. Ed. 2. Clarendon Press, Oxford.

    Google Scholar 

  • Miller, R. B. 1975. Systematic anatomy of the xylem and comments on the relationships of Flacourtiaceae. J. Arnold Arbor. 56: 20–102.

    Google Scholar 

  • Moomaw, J. C., M. T. Nakamura &G. D. Sherman. 1959. Aluminum in some Hawaiian plants. Pacific Sci. 8: 335–341.

    Google Scholar 

  • Nagata, T., M. Hayatsu &N. Kosuge. 1992. Identification of aluminium forms in tea leaves by27A1 NMR. Phytochemistry 31: 1215–1218.

    Article  CAS  Google Scholar 

  • Nickrent, D. L., R. J. Duff, A. E. Cohvell, A. D. Wolfe, N. D. Young, K. E. Steiner & C. W.dePamphilis. 1998. Molecular phylogenetic and evolutionary studies of parasitic plants. Pp. 211–241in D.E. Soltis, P. S. Soltis & J. J. Doyle (eds.), Molecular systematics of plants II: DNA sequencing. Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Olmstead, R. G., B. Bremer, K. M. Scott &J. D. Palmer. 1993. A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Ann. Missouri Bot. Gard. 80: 700–722.

    Article  Google Scholar 

  • Osaki, M., T. Watanabe &T. Tadano. 1997. Beneficial effect of aluminum on growth of plants adapted to low pH soils. Soil Sci. Pl. Nutr. 43: 551–563.

    CAS  Google Scholar 

  • Pavan, M. A. &E. T. Bingham. 1982. Aluminium toxicity in coffee trees cultivated in nutrient solu-tion. Pesq. Agropecu. Brasil 17: 1293–1302.

    CAS  Google Scholar 

  • Pollard, A. J. 2000. Metal hyperaccumulation: A model system for coevolutionary studies. New Phytol. 146: 179–181.

    Article  Google Scholar 

  • — &A. J. M. Baker. 1997. Deterrence of herbivory by zinc hyperaccumulation inThlaspi caerulescens. New Phytol. 135: 655–658.

    Article  CAS  Google Scholar 

  • Puthota, V., R. Cruz-Ortega, J. Johnson &J. Ownby. 1991. An ultrastructural study of the inhibition of mucilage secretion in the wheat root cap by aluminium. Pp. 779–787in R. J. Wright, V. C. Baligar & R. P. Murrmann (eds.), Plant-soil interactions at low pH. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Raskin, I., P. B. A. N. Kumar, S. Dushenkov &D. E. Salt. 1994. Bioconcentration of heavy metals by plants. Curr. Opinion Biotechnol. 5: 285–290.

    Article  CAS  Google Scholar 

  • Read, D. J. 1991. Mycorrhizas in ecosystems. Experientia (Basel) 47: 376–391.

    Google Scholar 

  • Reeves, R. D. 1992. The hyperaccumulation of nickel by serpentine plants. Pp. 253–277in A. J.M. Baker, J. Proctor, & R. D. Reeves (eds.), The vegetation of ultramafic (serpentine) soils. Intercept, Andover, UK.

    Google Scholar 

  • — &A. J. M. Baker. 2000. Metal-accumulating plants. Pp. 193–229in I. Raskin & B. D. Ensley (eds.), Phytoremediation of toxic metals: Using plants to clean up the environment. John Wiley, New York.

    Google Scholar 

  • Renner, S. S. 1999. Circumscription and phylogeny of the Laurales: Evidence from molecular and mor-phological data. Amer. J. Bot. 86: 1301–1315.

    Article  CAS  Google Scholar 

  • Robinson, W. O. &G. Edgington. 1945. Minor elements in plants, and some accumulator plants. Soil Sci. 60: 15–28.

    Article  CAS  Google Scholar 

  • Rodrigues, R. K., D. J. Kiemen &L. L. Barton. 1984. Iron metabolism by an ectomycorrhizal fungusCenococcum graniforme. J. Pl. Nutr. 7: 459–468.

    Google Scholar 

  • Rohwer, J. G. 2000. Toward a phylogenetic classification of the Lauraceae: Evidence from matK se-quences. Syst. Bot. 25: 60–71.

    Article  Google Scholar 

  • Roy, A. K., A. Sharma &G. Talukder. 1988. Some aspects of aluminum toxicity in plants. Bot. Rev. (Lancaster) 54: 145–178.

    Article  Google Scholar 

  • Royal Botanic Gardens, Kew. 2000. Kew record of taxonomic literature,http://www.rbgkew.org.uk/ bibliographies/KR/KRHomeExt.html

  • Rumphius, G. E. 1743. Herbarium amboinense (Het Amboisch Kruid-boek). Vol. 3. Ed. J. Burmannus. Amsterdam.

  • Savolainen, V., M. W. Chase, S. B. Hoot, C. M. Morton, D. E. Soltis, C. Bayer, M. F. Fay, A. Y. De Bruijn, S. Sullivan &Y.-L. Qiu. 2000a. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol. 49: 306–362.

    Article  PubMed  CAS  Google Scholar 

  • —,M. F. Fay, D. C. Albach, A. Backlund, M. van der Bank, K. M. Cameron, S. A. Johnson, M. D. Lledó, J.-C. Pintaud, M. Powell, M. C. Sheahan, D. E. Soltis, P. S. Soltis, P. Weston, W. M. Whitten, K. J. Wurdack &M. W. Chase. 2000b. Phylogeny of the eudicots: A nearly complete familial analysis based on rbcL gene sequences. Kew Bull. 55: 257–309.

    Article  Google Scholar 

  • Schöttelndreier, M., M. M. Norddahl, L. Ström &U. Falkengren-Grerup. 2001. Organic acid exuda-tion by wild herbs in response to elevated Al concentrations. Ann. Bot (London) 87: 769–775.

    Article  CAS  Google Scholar 

  • Shaw, G. 1987. Iron and aluminium toxicity in the Ericaceae in relation to mycorrhizal infection. Ph.D. diss., Univ. of Sheffield.

  • —,J. R. Leake, A. J. M. Baker &D. J. Read. 1990. The biology of mycorrhiza in the Ericaceae, XVII. The role of mycorrhizal infection in the regulation of iron uptake by ericaceous plants. New Phytol. 115: 251–258.

    Article  CAS  Google Scholar 

  • Smith, H. G. 1903. Aluminium the chief inorganic element in a proteaceous tree, and the occurrence of aluminium succinate in trees of this species. J. & Proc. Roy. Soc. New South Wales 3: 107–121.

    Google Scholar 

  • Smith, S. E. &D. J. Read. 1997. Mycorrhizal symbiosis. Ed. 2. Academic Press, San Diego.

    Google Scholar 

  • Soltls, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, K. C. Nixon &J. S. Farris. 2000. Angiosperm phytogeny inferred from a combined data set of 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133: 381–461.

    Google Scholar 

  • Stevenson, D. W., J. I. Davis, J. V. Freudenstein, C. R. Hardy, M. P. Simmons &C. D. Specht. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement ofAcorns and Hydatellaceae. Pp. 17–24in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. CS1RO, Collingwood, Australia.

    Google Scholar 

  • Takeda, K., M. Kariuda &H. Itoi. 1985. Blueing of sepal colour ofHydrangea macrophylla. Phy-tochemistry 24: 2251–2254.

    CAS  Google Scholar 

  • Tang, Y., M. E. Sorrels, L. V. Kochian &D. F. Garvin. 2000. Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci. (Madison) 40: 778–782.

    CAS  Google Scholar 

  • Taylor, G. J. 1988a. The physiology of aluminum phytotoxicity. Pp. 123–163in H. Sigel & A. Sigel (eds.), Metal ions in biological systems. Vol. 24. Aluminum and its role in biology. Marcel Dekker, New York.

    Google Scholar 

  • —. 1988b. Mechanisms of aluminum tolerance inTriticum aestivum L. (wheat), V. Nitrogen nutri-tion, plant-induced pH, and tolerance to aluminum; correlation without causality? Canad. J. Bot. 66: 694–699.

    CAS  Google Scholar 

  • —. 1991. Current views of the aluminum stress response: The physiological basis of tolerance. Pp. 57–93in D. D. Randall, D. G. Blevins & C. D. Miles (eds.), Ultraviolet-B radiation stress, alumi-num stress, toxicity and tolerance, boron requirements, stress and toxicity. Current Topics in Plant Biochemistry and Physiology, 10. Interdisciplinary Plant Biochemistry and Physiology Program, Univ. of Missouri, Columbia.

    Google Scholar 

  • —. 1995. Overcoming barriers to understanding the cellular basis of aluminium resistance. Pl. & Soil 171: 89–103.

    Article  CAS  Google Scholar 

  • — &C. D. Foy. 1985. Mechanisms of aluminum tolerance inTriticum aestivum L. (wheat), IV. The role of ammonium and nitrate nutrition. Canad. J. Bot. 63: 2181–2186.

    Article  CAS  Google Scholar 

  • —,J. L. McDonald-Stephens, D. B. Hunter, P. M. Bertsch, D. Elmore, Z. Rengel &R. J. Reid. 2000. Direct measurement of aluminum uptake and distribution in single cells ofChara corallina. Pl. Physiol. (Lancaster) 123: 987–996.

    Article  CAS  Google Scholar 

  • Trappe, J. M. 1987. Phylogenetic and écologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. Pp. 5–25in G. R. Safir (ed.), Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Van Staveren, M. G. C. &P. Baas. 1973. Epidermal leaf characters of the Malesian Icacinaceae. Acta Bot. Neerl. 22: 329–359.

    Google Scholar 

  • Vitorello, V. A. &A. Haug. 1996. Short-term aluminum uptake by tobacco cells: Growth dependence and evidence for internalization in a discrete peripheral region. Physiol. Pl. (Copenhagen) 97: 536–544.

    Article  CAS  Google Scholar 

  • Von Faber, F. C. 1925. Untersuchungen über die Physiologie der javanischen Solfataren-Pflanzen. Flora 118: 89–110.

    Google Scholar 

  • Von Uexküll, H. R. &E. Mutert. 1995. Global extent, development and economic impact of acid soils. Pl. & Soil 171: 1–15.

    Article  Google Scholar 

  • Watanabe, T., M. Osaki &T. Tadano. 1997. Aluminum-induced growth stimulation in relation to calcium, magnesium, and silicate nutrition inMelastoma malabathricum L. Soil Sci. Pl. Nutr. 43: 827–837.

    CAS  Google Scholar 

  • ——,T. Yoshihara &T. Tadano. 1998. Distribution and chemical speciation of aluminum in the Al accumulator plant,Melastoma malabathricum L. Pl. & Soil 201: 165–173.

    Article  CAS  Google Scholar 

  • Webb, L. J. 1953. An occurrence of aluminium succinate inCardwellia sublimis F. Muell. Nature 171: 656.

    Article  PubMed  CAS  Google Scholar 

  • —. 1954. Aluminium accumulation in the Australian-New Guinea flora. Aust. J. Bot. 2: 176–197.

    Article  CAS  Google Scholar 

  • Webster, G. L. 1975. Conspectus of a new classification of the Euphorbiaceae. Taxon 24: 593–601.

    Article  Google Scholar 

  • —. 1994. Classification of the Euphorbiaceae. Ann. Missouri Bot. Gard. 81: 3–32.

    Article  Google Scholar 

  • Wurdack, K. J. & M. W. Chase. 1999. Spurges split: Molecular systematics and changing concepts of Euphorbiaceae, s.1. Abstr. XVI Int. Bot. Congr., Saint Louis, MO, 12.2.1. p. 142.

  • Xiang, Q.-Y., D. E. Soltis, D. R. Morgan &P. S. Soltis. 1993. Phylogenetic relationships ofCornus L. sensu lato and putative relatives inferred from rbcL sequence data. Ann. Missouri Bot. Gard. 80: 723–734.

    Article  Google Scholar 

  • —— &P. S. Soltis. 1998. Phylogenetic relationships of Cornaceae and close relatives in-ferred from matK and rbcL sequences. Amer. J. Bot. 85: 285–297.

    Article  Google Scholar 

  • Yang, Z. M., M. Sivaguru, W. J. Horst &H. Matsumoto. 2000. Aluminium tolerance is achìeved by exudation of citric acid from roots of soybean (Glycine max). Physiol. Pl. (Copenhagen) 110: 72–77.

    Article  CAS  Google Scholar 

  • Zhang, G. &G. J. Taylor. 1990. Kinetics of aluminum uptake inTrilicum aestivum L.: Identity of the linear phase of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars. Pl. Physiol. (Lancaster) 94: 577–584.

    CAS  Google Scholar 

  • ——. 1991. Effects of biological inhibitors on kinetics of aluminum uptake by excised roots and purified cell wall material of aluminum-tolerant and aluminum-sensitive cultivars ofTriticum aestivum L. J. Plant Physiol. 138: 533–539.

    Google Scholar 

  • Zheng, S. J., J. F. Ma &H. Matsumoto. 1998. High aluminum resistance in buckwheat, I. Al-induced specific secretion of oxalic acid from root tips. PI. Physiol. (Lancaster) 117: 745–751.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, S., Broadley, M.R., Robbrecht, E. et al. Aluminum hyperaccumulation in angiosperms: A review of its phylogenetic significance. Bot. Rev 68, 235–269 (2002). https://doi.org/10.1663/0006-8101(2002)068[0235:AHIAAR]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2002)068[0235:AHIAAR]2.0.CO;2

Keywords

Navigation