Skip to main content
Log in

Relationships between diatoms and environmental variables in wetlands in the Willamette Valley, Oregon, USA

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The heterogeneous nature and widespread anthropogenic impacts to wetlands in the Willamette Valley, Oregon, pose challenges to bioassessment of these systems. The purpose of this study was to examine diatom species patterns in relation to environmental variables in wetlands, and to compare a diatom-based wetland classification to a hydrogeomorphic (HGM) wetland classification. Surface sediment diatoms, water quality, physical habitat, and surrounding land use characteristics were assessed for 92 wetlands. A total of 419 taxa were identified. Taxa richness was high (mean = 54, range 15–94) and dominance by a single taxon at a site was low (mean = 27%, range 7%–78%). Assemblages were dominated by tychoplanktonic taxa (e.g., Staurosira construens) and periphytic taxa (e.g., Fragilaria capucina and Achnanthidium minutissimum). Non-metric multidimensional scaling and correlational analysis showed that diatom assemblages were correlated with water depth, summer and winter total phosphorus, soluble reactive phosphorus, and turbidity. Diatom-based classification of wetlands produced four statistically significant groups that corresponded to within-wetland water depth, nutrient levels, and turbidity. Diatom-based wetlands classification did not agree with a priori HGM classification. Diatom assemblages and common species were similar between depressional and riverine-impounded wetlands. Our results suggest that, despite regional heterogeneity in both diatom assemblages and environmental conditions, diatoms can be useful indicators of water quality and habitat conditions in riverine and depressional wetlands. HGM classification may be too coarse to elucidate patterns of diatom community structure and conditions of the habitat in these anthropogenically-impacted wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adamus, P. R. 2001. Guidebook for hydrogeomorphic (HGM)-based assessment of Oregon wetland and riparian sites: statewide classification and profiles. Oregon Division of State Lands, Salem, OR, USA.

    Google Scholar 

  • Ameel, J. J., R. P. Axler, and C. J. Owen. 1993. Persulfate digestion for determination of total nitrogen and phosphorus in low-nutrient waters. American Environmental Laboratories 5: 1–11.

    Google Scholar 

  • Anderson, N. J. 1989. A whole-basin diatom accumulation rate for a small eutrophic lake in Northern Ireland and its paleoecological implications. Journal of Ecology 77: 926–46.

    Article  Google Scholar 

  • Babb, J. S., C. A. Cole, R. P. Brooks, and A. W. Rose. 1997. Hydrogeomorphology, watershed geology, and water quality of wetlands in central Pennsylvania. Journal of the Pennsylvania Academy of Science 71: 21–28.

    CAS  Google Scholar 

  • Bahls, L. L. 1993. Periphyton bioassessment methods for Montana streams. Water Quality Bureau, Department of Health and Environmental Sciences, Helena, Montana, USA.

    Google Scholar 

  • Bennion, H. 1994. A diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275/276: 391–410.

    Article  Google Scholar 

  • Bennion, H. 1995. Surface-sediment diatom assemblages in shallow, artificial, enriched ponds, and implications for reconstructing trophic status. Diatom Research 10: 1–19.

    Google Scholar 

  • Bennion, H., P. G. Appleby, and G. L. Phillips. 2001. Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. Journal of Paleolimnology 26: 181–204.

    Article  Google Scholar 

  • Bernert, J. A., J. M. Eilers, B. J. Eilers, E. Blok, S. G. Daggett, and K. F. Bierly. 1999. Recent wetlands trends (1981/82–1994) in the Willamette Valley, Oregon, USA. Wetlands 19: 545–59.

    Article  Google Scholar 

  • Brinson, M. M. 1993. A hydrogeomorphic classification of wetlands. US Army Corps of Engineers Waterways Experimental Station, Vicksburg, MS, USA.Tech. Report WRPDE-4. WRPDE-4.

    Google Scholar 

  • Brown, M. T. and M. B. Vivas. 2005. Landscape development index. Ecological Monitoring and Assessment 101: 289–309.

    Article  Google Scholar 

  • Chessman, B., I. Growns, J. Currey, and N. Plunkett-Cole. 1999. Predicting diatom communities at the genus level for the rapid bioassessment of rivers. Freshwater Biology 41: 317–31.

    Article  Google Scholar 

  • Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, twentieth edition. American Public Health Association, Baltimore, MD, USA.

    Google Scholar 

  • Cooper, S. R. 1999. Estuarine paleoenvironmental reconstructions using diatoms. p. 352–73. In E. F. Stoermer and J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Dixit, A. S., S. S. Dixit, and J. P. Smol. 1992. Long-term trends in lake water pH and metal concentrations inferred from diatoms and chrysophytes in three lakes near Sudbury, Ontario. Canadian Journal of Fisheries and Aquatic Sciences 49: 17–24.

    Article  CAS  Google Scholar 

  • Douglas, M. M., S. E. Bunn, and P. M. Davies. 2005. River and wetland food webs in Australia’s wet-dry tropics: general principles and implications for management. Marine and Freshwater Research 56: 329–42.

    Article  Google Scholar 

  • Dufrene, M. P. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–66.

    Google Scholar 

  • Enright, C., M. Aoki, D. Oetter, D. Hulse, and W. Cohen. 2002. Land use and land cover. p. 66–81. In D. Hulse, S. Gregory, and J. Baker (eds.) Willamette River Basin Planning Atlas: Trajectories of Environmental and Ecological Change. Oregon State University Press, Corvallis, OR, USA.

    Google Scholar 

  • Forsberg, B. R., A. H. Devol, and J. E. Richey. 1988. Factors controlling nutrient concentrations in Amazon floodplain lakes. Limnology and Oceanography 33: 41–56.

    CAS  Google Scholar 

  • Fritz, S. C., B. F. Cumming, F. Gasse, and K. R. Laird. 1999. Diatoms as indicators of hydrologic and climatic change in saline lakes. p. 41–72. In E. F. Stoermer and J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Gabriel, J. T. 1993. A modified synoptic analysis of the status of Oregon’s Willamette Valley Wetlands. M.S. Thesis. Oregon State University, Corvallis, OR, USA.

    Google Scholar 

  • Goldsborough, L. G. and G. G. C. Robinson. 1996. Pattern in wetlands. p. 78–117. In R. J. Stevenson, M. L. Bothwell, and R. L. Lowe (eds.) Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Grobbelaar, J. U. 1983. Availability to algae of N and P adsorbed on suspended solids in turbid waters of the Amazon River. Archive für Hydrobiologie 96: 302–16.

    CAS  Google Scholar 

  • Hawkins, C. P., R. H. Norris, J. H. Hogue, and J. W. Feminella. 2000. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications 10: 1456–77.

    Article  Google Scholar 

  • Hauer, F. R. and R. D. Smith. 1998. The hydrogeomorphic approach to functional assessment of riparian wetlands: evaluating impacts and mitigation on river floodplains in the U.S.A. Freshwater Biology 40: 517–30.

    Article  Google Scholar 

  • John, J. 1993. The use of diatoms in monitoring the development of created wetlands at a sandmining site in Western Australia. Hydrobiologia 269/270: 427–36.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley, and R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems. p. 110–27. In D. P. Dodge (ed.), Proceedings of the International Large River Symposium. Canadian Special Publication in Fisheries and Aquatic Sciences 106.

  • Kelly, M. G. and B. A. Whitton. 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–44.

    Article  Google Scholar 

  • Kim, J. G. and E. Rejmankova. 2001. The paleoecological record of human disturbance in wetlands of the lake Tahoe Basin. Journal of Paleolimnology 25: 437–54.

    Article  Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1986. Bacillariophyceae, Part 1. Naviculaceae. Spektrum Akademischer Verlag, Heidelberg, Germany.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1988. Bacillariophyceae, Part 2. Epithemiaceae, Bacillariophyceae, Surirellaceae. Spektrum Akademischer Verlag, Heidelberg, Germany.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1991a. Bacillariophyceae, Part 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. Spektrum Akademischer Verlag, Heidelberg, Germany.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophyceae, Part 4. Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolate) und Gomphonema. Spektrum Akademischer Verlag, Heidelberg, Germany.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 2000. Bacillariophyceae, Part 5. English and French Translation of the Keys. Spektrum Akademischer Verlag, Heidelberg, Germany.

    Google Scholar 

  • Lange-Bertalot, H. 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64: 285–303.

    Google Scholar 

  • Magee, T. K., T. L. Ernst, M. E. Kentula, and K. A. Dwire. 1999. Floristic comparison of freshwater wetlands in an urbanizing environment. Wetlands 19: 517–34.

    Google Scholar 

  • Mayer, P. M. and S. M. Galatowitsch. 1999. Diatom communities as ecological indicators of recovery in restored prairie wetlands. Wetlands 19: 765–74.

    Article  Google Scholar 

  • McCormick, P. and M. O’Dell. 1996. Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic experimental approach. Journal of the North American Benthological Society 15: 450–68.

    Article  Google Scholar 

  • McCune, B. and M. J. Mefford. 1999. Multivariate Analysis of Ecological Data version 4.14. MjM Software, Gleneden Beach, OR, USA.

    Google Scholar 

  • Molloy, J. M. 1992. Diatom communities along stream longitudinal gradients. Freshwater Biology 28: 59–69.

    Article  Google Scholar 

  • Naymik, J., Y. Pan, and J. Ford. 2005. Diatom assemblages as indicators of timber harvest effects in coastal Oregon streams. Journal of North American Benthological Society 24: 569–84.

    Google Scholar 

  • Omernik, J. M. and A. L. Gallant. 1986. Ecoregions of the Pacific Northwest. map scale 1:2,500,000. U. S. Environmental Protection Agency, Corvallis, Oregon, USA. EPA/600/3-86/033.

    Google Scholar 

  • Osborne, P. L. and B. Moss. 1977. Paleolimnology and trends in the phosphorus and iron budgets of an old manmade lake, Barton Road, Norfork. Freshwater Biology 7: 213–33.

    Article  CAS  Google Scholar 

  • Pan, Y. and R. J. Stevenson. 1996. Gradient analysis of diatom assemblages in western Kentucky wetlands. Journal of Phycology 32: 222–32.

    Article  Google Scholar 

  • Pan, Y., R. J. Stevenson, P. Vaithiyanathan, J. Slate, and C. J. Richardson. 2000. Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, USA. Freshwater Biology 44: 339–54.

    Article  Google Scholar 

  • Patrick, R. and C. W. Reimer. 1966. The Diatoms of the United States, Volume 1. Monographs of the Academy of Natural Sciences of Philadelphia No. 13, Philadelphia, PA, USA.

  • Patrick, R. and C. W. Reimer. 1975. The Diatoms of the United States, Volume 2. Monographs of the Academy of Natural Sciences of Philadelphia No. 13, Philadelphia, PA, USA.

  • Ponader, K. C., D. F. Charles, and T. J. Belton. 2007. Diatombased TP and TN models and indices for monitoring nutrient enrichment of New Jersey streams. Ecological Indicators 7: 79–93.

    Article  Google Scholar 

  • Potapova, M. G., D. F. Charles, K. C. Ponader, and D. M. Winter. 2004. Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiologia 517: 25–41.

    Article  Google Scholar 

  • Robinson, G. G. C., S. E. Gurney, and L. G. Goldsborough. 1997. The primary productivity of benthic and planktonic algae in a prairie wetland under controlled water-level regimes. Wetlands 17: 182–94.

    Article  Google Scholar 

  • Sayer, C. D. 2001. Problems with the application of diatom-total phosphorus transfer functions: examples from a shallow English Lake. Freshwater Biology 46: 743–57.

    Article  CAS  Google Scholar 

  • Slate, J. E. and R. J. Stevenson. 2000. Recent and abrupt environmental change in the Florida Everglades indicated from siliceous microfossils. Wetlands 20: 346–56.

    Article  Google Scholar 

  • Soininen, J. and P. Niemelä. 2002. Inferring the phosphorus levels of rivers from benthic diatoms using weighted averaging. Archive für Hydrobiologie 154: 1–18.

    CAS  Google Scholar 

  • Stevenson, R. J. and F. R. Hauer. 2002. Integrating Hydrogeomorphic and Index of Biotic Integrity approaches for environmental assessment of wetlands. Journal of the North American Benthological Society 21: 502–13.

    Article  Google Scholar 

  • Stromberg, J. C., J. Fry, and D. T. Patten. 1997. Marsh development after large floods in an alluvial, arid-land river. Wetlands 17: 292–300.

    Article  Google Scholar 

  • Trainor, F. R. 1984. Indicator algal assays: laboratory and field approaches. p. 3–14. In E. Schubert (ed.) Algae as Ecological Indicators. Academic Press, London, UK.

    Google Scholar 

  • Van Dam, H., A. Mertens, and J. Sinkeldam. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–33.

    Article  Google Scholar 

  • van den Brink, F. W. B., J. P. H. M. De Leeuw, G. van der Velde, and G. M. Verheggen. 1993. Impact of hydrology on the chemistry and phytoplankton development in floodplain lakes along the Lower Rhine and Muese. Biogeochemistry 19: 103–28.

    Article  Google Scholar 

  • Vymazal, J. 1995. Algae and Element Cycling in Wetlands. CRC Press, Inc., Boca Raton, Florida, USA.

    Google Scholar 

  • Walker, C. and Y. Pan. 2006. Using diatom assemblages to assess urban stream conditions. Hydrobiologia 561: 179–89.

    Article  CAS  Google Scholar 

  • Weilhoefer, C. L. 2005. Large river-floodplain interactions: can historic Willamette Basin condition be reconstructed utilizing floodplain wetland diatom paleocology? Ph.D. Dissertation. Portland State University, Portland, OR, USA.

    Google Scholar 

  • Weilhoefer, C. L. and Y. Pan. 2006a. Diatom assemblages and their associations with environmental variables in Oregon coastal streams, USA. Hydrobiologia 561: 207–19.

    Article  CAS  Google Scholar 

  • Weilhoefer, C. L. and Y. Pan. 2006b. Diatom-based bioassessment in wetlands: how many samples do we need to characterize the diatom assemblage in a wetland adequately? Wetlands 26: 793–802.

    Article  Google Scholar 

  • Wetzel, R. G. and G. E. Likens. 1991. Limnological Analysis. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Wilcox, D. A., J. E. Meeker, P. L. Hudson, B. J. Armitage, M. G. Black, and D. G. Uzarski. 2002. Hydrologic variability and the application of index of biotic integrity metrics to wetlands: a Great Lakes evaluation. Wetlands 22: 588–615.

    Article  Google Scholar 

  • Winter, J. G. and H. C. Duthie. 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society 19: 32–49.

    Article  Google Scholar 

  • Wright, J. F., M. T. Furse, and P. D. Armitage. 1993. RIVPACS — a technique for evaluating the biological quality of rivers in the UK. European Water Control 3: 15–25.

    Google Scholar 

  • Wu, X. and W. J. Mitsch. 1998. Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands 18: 9–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Weilhoefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weilhoefer, C.L., Pan, Y. Relationships between diatoms and environmental variables in wetlands in the Willamette Valley, Oregon, USA. Wetlands 27, 668–682 (2007). https://doi.org/10.1672/0277-5212(2007)27[668:RBDAEV]2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2007)27[668:RBDAEV]2.0.CO;2

Key Words

Navigation