Skip to main content
Log in

Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Typha species are increasingly considered invasive weeds in wetlands of eastern North America. Typha angustifolia and T. × glauca are often seen as more invasive than T. latifolia, but there are few comparative biogeographic data on these three species. We examined 1,127 Typha specimens archived in major herbaria to map changes in the distributions of these species since the late-19th century. We also analyzed pollen records from the North American Pollen Database (NAPD) to examine longer-term trends in abundance of each Typha species. Proportion curves comparing the relative spread of T. angustifolia and T. latifolia reveal a period of enhanced range increase in T. angustifolia in the early to mid-20th century. From the mid-20th century onwards, the two species increased at the same rate. The relatively higher rate of spread in T. angustifolia levels off after 1930 in the more coastal region of New England, but does not stop increasing inland and in more northern regions such as Ontario until after 1970. Pollen data suggest that 80% of relevant sites in the North American Pollen Database showed an increase in the abundance of one or both Typha species over the past 1,000 years. However, there was no significantly greater increase in one type of pollen compared to the other. Typha-type pollen grains in the form of tetrads and monads are recorded in the database throughout the Holocene and late Pleistocene; however, few studies analyzed the morphology of the pollen grains sufficiently to allow for positive identification of T. angustifolia. In the few recent records that made those measurements, small numbers of pre-settlement incidences of T. angustifolia and T. × glauca are recorded. Pollen and herbarium data suggest that T. angustifolia may have been present in North America prior to European settlement, but was not widespread. Herbarium data confirm that the range increase has been considerably larger in T. angustifolia than in T. latifolia since 1880, but both Typha species have been increasing at the same rate for the past several decades, and both will continue to display invasive tendencies in disturbed wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Almquist-Jacobson, H., J. E. Almendinger, and S. E. Hobbie. 1992. Influence of terrestrial vegetation on sediment-forming processes in kettle lakes of west-central Minnesota. Quaternary Research 38: 103–16.

    Article  Google Scholar 

  • Baker, R. G., P. M. Chumbley, P. M. Witinok, and H. K. Kim. 1990. Holocene vegetational changes in eastern Iowa. Journal of the Iowa Academy of Science 97: 167–77.

    Google Scholar 

  • Boyd, C. E. 1970. Vascular aquatic plants for mineral nutrient removal from polluted waters. Economic Botany 24: 93–103.

    Google Scholar 

  • Brix, H., K. Dyhr-Jensen, and B. Lorenzen. 2002. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. Journal of Experimental Botany 53: 2441–50.

    Article  CAS  PubMed  Google Scholar 

  • Case, M. A., K. M. Flinn, J. Jancaitis, A. Alley, and A. Paxton. 2007. Declining abundance of American ginseng (Panax quinquefolius L.) documented by herbarium specimens. Biological Conservation 134: 22–30.

    Article  Google Scholar 

  • Chow-Fraser, P. 2005. Ecosystem response to changes in water level of Lake Ontario marshes: lessons from the restoration of Cootes Paradise Marsh. Hydrobiologia 539: 189–204.

    Article  Google Scholar 

  • Chow-Fraser, P., V. Lougheed, V. L. Thiec, B. Crosbie, L. Simser, and J. Lord. 1998. Long-term responses of the biotic community to fluctuating water levels and changes in water quality in Cootes Paradise Marsh, a degraded coastal wetland of Lake Ontario. Wetlands Ecology and Management 6: 19–42.

    Article  Google Scholar 

  • Comtois, P. G. 1982. Histoire holocène du climat et de la végétation à Lanoraie (Québec). Canadian Journal of Earth Sciences 19: 1938–52.

    Google Scholar 

  • Confer, S. R. and W. A. Niering. 1992. Comparison of created and natural freshwater emergent wetlands in Connecticut (USA). Wetlands Ecology and Management 2: 143–56.

    Article  Google Scholar 

  • Cousens, R. and M. Mortimer. 1995. Dynamics of Weed Populations. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Davis, A. M. 1977. The prairie-deciduous forest ecotone in the upper Middle West. Annals of the Association of American Geographers 67: 204–13.

    Article  Google Scholar 

  • Davis, M. B. 1958. Three pollen diagrams from central Massachusetts. American Journal of Science 256: 540–70.

    Google Scholar 

  • Delisle, F., C. Lavoie, M. Jean, and D. Lachance. 2003. Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens. Journal of Biogeography 30: 1033–42.

    Google Scholar 

  • Dibb, G. C. 1985. Late palaeo-indian settlement patterns along the margins of the Simcoe Lowlands in southcentral Ontario. M.S. Thesis. Trent University, Peterborough, Ontario, Canada.

    Google Scholar 

  • Dinel, H., P. J. H. Richard, P. E. M. Levesque, and A. C. Larouche. 1986. Origine et évolution du marais tourbeux de Keswick, Ontario, par l’analyse pollinique et macrofossile. Canadian Journal of Earth Sciences 23: 1145–55.

    Article  Google Scholar 

  • Dugle, J. R. and T. P. Copps. 1972. Pollen characteristics of Manitoba cattails. The Canadian Field-Naturalist 86: 33–40.

    Google Scholar 

  • Dunwiddie, P. W. 1990. Postglacial vegetation history of coastal islands in southeastern New England. National Geographic Research 6: 178–95.

    Google Scholar 

  • Ervin, G. N. and R. G. Wetzel. 2003. An ecological perspective of allelochemical interference in land-water interface communities. Plant and Soil 256: 13–28.

    Article  CAS  Google Scholar 

  • Faegri, K. and J. Iversen. 1989. Textbook of Pollen Analysis, fourth edition. John Wiley & Sons, Inc, Chichester, UK.

    Google Scholar 

  • Finkelstein, S. A. 2003. Identifying pollen grains of Typha latifolia, Typha angustifolia, and Typha × glauca. Canadian Journal of Botany 81: 985–90.

    Article  Google Scholar 

  • Finkelstein, S. A. and A. M. Davis. 2005. Modern pollen rain and diatom assemblages in a Lake Erie coastal marsh. Wetlands 25: 551–63.

    Article  Google Scholar 

  • Finkelstein, S. A., M. C. Peros, and A. M. Davis. 2005. Late Holocene paleoenvironmental change in a Great Lakes coastal wetland: integrating pollen and diatom datasets. Journal of Paleolimnology 33: 1–12.

    Article  Google Scholar 

  • Fredlund, G. G. 1995. Late Quaternary pollen record from Cheyenne Bottoms, Kansas. Quaternary Research 43: 67–79.

    Article  Google Scholar 

  • Galatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19: 733–55.

    Article  Google Scholar 

  • Gleason, H. A. and A. Cronquist. 1995. Manual of Vascular Plants of Northeastern United States and Adjacent Canada, second edition. The New York Botanical Garden, New York, NY, USA.

    Google Scholar 

  • Grace, J. B. 1988. The effects of nutrient additions on mixture of Typha latifolia L. and Typha domingensis Pers. along a water-depth gradient. Aquatic Botany 31: 83–92.

    Article  Google Scholar 

  • Grace, J. B. and J. S. Harrison. 1986. The biology of Canadian weeds. 73. Typha latifolia L., Typha angustifolia L. and Typha xglauca Godr. Canadian Journal of Plant Sciences 66: 361–79.

    Article  Google Scholar 

  • Grace, J. B. and R. G. Wetzel. 1981. Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. The American Naturalist 118: 463–74.

    Article  Google Scholar 

  • Grace, J. B. and R. G. Wetzel. 1982. Niche differentiation between two rhizomatous plants: Typha latifolia and Typha angustifolia. Canadian Journal of Botany 60: 46–57.

    Article  Google Scholar 

  • Grimm, E. C. 1983. Chronology and dynamics of vegetation change in the prairie-woodland region of southern Minnesota, U.S.A. New Phytologist 93: 311–50.

    Article  Google Scholar 

  • Grüger, E. 1972. Late Quaternary vegetation development in south-central Illinois. Quaternary Research 2: 217–31.

    Article  Google Scholar 

  • Hager, H. A. 2004. Competitive effect versus competitive response of invasive and native wetland plant species. Oecologia 139: 140–49.

    Article  PubMed  Google Scholar 

  • Hotchkiss, N. and H. L. Dozier. 1949. Taxonomy and distribution of N. American Cat-tails. The American Midland Naturalist 41: 237–54.

    Article  Google Scholar 

  • Houlahan, J. E. and C. S. Findlay. 2004. Effect of invasive plant species on temperate wetland plant diversity. Conservation Biology 18: 1132–38.

    Article  Google Scholar 

  • Jackson, S. T., R. P. Futyma, and D. A. Wilcox. 1988. A paleoecological test of a classical hydrosere in Lake Michigan Dunes. Ecology 69: 928–36.

    Article  Google Scholar 

  • Jacob, D. L. and M. L. Otte. 2004. Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types. Science of the Total Environment 333: 9–24.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, C. R. 1984. Modern pollen assemblages and vegetation in the Myrtle Lake Peatland, Minnesota. Ecological Monographs 54: 213–52.

    Article  Google Scholar 

  • Kneller, M. and D. M. Peteet. 1993. Late-Quaternary climate in the ridge and valley of Virginia, U.S.A.: changes in vegetation and depositional environment. Quaternary Science Reviews 12: 613–28.

    Article  Google Scholar 

  • Kuehn, M. M. 1998. Assessment of hybridization between Typha spp. in North America. Ph.D. Dissertation. McMaster University, Hamilton, Ontario, Canada.

    Google Scholar 

  • Kuehn, M. M. and B. N. White. 1999. Morphological analysis of genetically identified cattails Typha latifolia, Typha angustifolia, and Typha ×glauca. Canadian Journal of Botany 77: 906–12.

    Article  Google Scholar 

  • Laird, K. R., S. C. Fritz, E. C. Grimm, and P. G. Mueller. 1996. Century-scale paleoclimatic reconstruction from Moon Lake, a closed-basin lake in the northern Great Plains. Limnology and Oceanography 41: 890–902.

    Google Scholar 

  • Liu, K.-B. 1990. Holocene paleoecology of the boreal forest and Great Lakes-St Lawrence forest in northern Ontario. Ecological Monographs 60: 179–212.

    Article  Google Scholar 

  • Mack, R. N. 2000. Assessing the extent, status, and dynamism of plant invasions: current and emerging approaches. p. 141–68. In H. A. Mooney and R. J. Hobbs (eds.) Invasive Species in a Changing World. Island Press, Washington, DC, USA.

    Google Scholar 

  • Manios, T., E. I. Stentiford, and P. A. Millner. 2003. The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous water. Ecological Engineering 20: 65–74.

    Article  Google Scholar 

  • Mbuligwe, S. E. 2004. Comparative effectiveness of engineered wetland systems in the treatment of anaerobically pre-treated domestic wastewater. Ecological Engineering 23: 269–84.

    Article  Google Scholar 

  • McAndrews, J. H. 1966. Postglacial history of prairie, savanna, and forest in northwestern Minnesota. Torrey Botanical Club Memoir 22: 1–72.

    Google Scholar 

  • McAndrews, J. H. 1968. Pollen evidence for the protohistoric development of the “Big Woods” in Minnesota (U.S.A.). Review of Palaeobotany and Palynology 7: 201–11.

    Article  Google Scholar 

  • McAndrews, J. H. 2003. Postglacial ecology of the Hiscock Site. p. 190–98. In R. S. Laub (ed.) The Hiscock Site: Late Pleistocene and Holocene Paleoecology and Archaeology of Western New York State. Buffalo Society of Natural Sciences, Buffalo, NY, USA.

    Google Scholar 

  • McAndrews, J. H., A. A. Berti, and G. Norris. 1973. Key to the Quaternary pollen and spores of the Great Lakes region. The Royal Ontario Museum, Toronto, Ontario, Canada.

    Google Scholar 

  • McCarthy, F. M. G. 1986. Late Holocene water levels in Lake Ontario: evidence from Grenadier Pond. M.S. Thesis. University of Toronto, Toronto, Ontario, Canada.

    Google Scholar 

  • McNaughton, S. J. 1968. Autotoxic feedback in relation to germination and seedling growth in Typha latifolia. Ecology 49: 367–69.

    Article  Google Scholar 

  • Mihulka, S. and P. Pysek. 2001. Invasion history of Oenothera congeners in Europe: a comparative study of spreading rates in the last 200 years. Journal of Biogeography 28: 597–609.

    Article  Google Scholar 

  • Moran, V. and H. Zimmerman. 1991. Biological control of jointed cactus, Opuntia aurantiaca (Cactaceae), in South Africa. Agriculture, Ecosystems and Environment 37: 5–27.

    Article  Google Scholar 

  • Mulhouse, J. M. and S. M. Galatowitsch. 2002. Revegetation of prairie pothole wetlands in the mid-continental US: twelve years post-reflooding. Plant Ecology 169: 143–59.

    Article  Google Scholar 

  • Myers, J. H. and D. R. Bazely. 2003. Ecology and Control of Introduced Plants. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Nicholls, M. S. and C. D. K. Cook. 1986. The function of pollen tetrads in Typha (Typhaceae). Veroeffentlichungen des Geobotanischen Institutes des Eidgenoessische Technische Hochschule Stiftung Ruebel in Zuerich 87: 112–19.

    Google Scholar 

  • Ogden III, J. G. 1966. Forest history of Ohio. I. radiocarbon dates and pollen stratigraphy of Silver Lake, Logan County, Ohio. Ohio Journal of Science 66: 387–400.

    Google Scholar 

  • Pederson, D. C., D. M. Peteet, D. Kurdyla, and T. Guilderson. 2005. Medieval Warming, Little Ice Age, and European impact on the environment during the last millennium in the lower Hudson Valley, New York, USA. Quaternary Research 63: 238–49.

    Article  Google Scholar 

  • Pyšek, P. and K. Prach. 1993. Plant invasions and the role of riparian habitats: a comparison of four species alien to central Europe. Journal of Biogeography 20: 413–20.

    Article  Google Scholar 

  • Pyšek, P. and K. Prach. 1995. Invasion dynamics of Impatiens glandulifera — a century of spreading reconstructed. Biological Conservation 74: 41–48.

    Article  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the United States of America 99: 2445–49.

    Article  CAS  PubMed  Google Scholar 

  • Selbo, S. M. and A. A. Snow. 2004. The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquatic Botany 78: 361–69.

    Article  Google Scholar 

  • Smith, S. G. 1967. Experimental and natural hybrids in North American Typha (Typhaceae). American Midland Naturalist 78: 257–87.

    Article  Google Scholar 

  • Smith, S. G. 1987. Typha: its taxonomy and the ecological significance of hybrids. Archiv für Hydrobiologie Beihefte 27: 129–38.

    Google Scholar 

  • Smith, S. G. 2000. Typhaceae. In Flora of North America Editorial Committee (ed.) 1993+ Flora of North America North of Mexico, Volume 22. Oxford University Press, New York, NY, USA.

    Google Scholar 

  • Stuckey, R. L. and D. P. Salamon. 1987. Typha angustifolia in North America: a foreigner masquerading as a native. (Abstract). American Journal of Botany 74: 757.

    Google Scholar 

  • Swain, A. M. 1974. A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments. Ph.D. Dissertation. University of Minnesota, Minneapolis, Minnesota, USA.

    Google Scholar 

  • Swain, P. C. 1979. The development of some bogs in eastern Minnesota. Ph.D. Dissertation. University of Minnesota, Minneapolis, Minnesota, USA.

    Google Scholar 

  • Szeicz, J. M. and G. M. MacDonald. 1991. Postglacial vegetation history of oak savanna in southern Ontario. Canadian Journal of Botany 69: 1507–19.

    Article  Google Scholar 

  • Takahashi, H. and K. Sohma. 1984. Development of pollen tetrad in Typha latifolia L. Pollen et Spores 26: 5–18.

    Google Scholar 

  • Tang, C. F., Y. G. Liu, G. M. Zeng, X. Li, W. H. Xu, C. F. Li, and X. Z. Yuan. 2005. Effects of exogenous spermidine on antioxidant system responses of Typha latifolia L. under Cd2+ stress. Journal of Integrative Plant Biology 47: 428–34.

    Article  CAS  Google Scholar 

  • Tsyusko-Omeltchenko, O. V., N. A. Schable, M. H. Smith, and T. C. Glenn. 2003. Microsatellite loci isolated from narrowleaved cattail Typha angustifolia. Molecular Ecology Notes 3: 535–38.

    Article  CAS  Google Scholar 

  • Van Zant, K. L. 1979. Late glacial and postglacial pollen and plant macrofossils from Lake West Okoboji, northwestern Iowa. Quaternary Research 12: 358–80.

    Article  Google Scholar 

  • Waters, I. and J. M. Shay. 1990. A field study of the morphometric response of Typha glauca shoots to a water depth gradient. Canadian Journal of Botany 68: 2339–43.

    Google Scholar 

  • Waters, I. and J. M. Shay. 1992. Effect of water depth on population parameters of a Typha glauca stand. Canadian Journal of Botany 70: 349–51.

    Article  Google Scholar 

  • Watts, W. A. and R. C. Bright. 1968. Pollen, seed, and mollusk analysis of a sediment core from Pickerel Lake, northeastern South Dakota. Geological Society of America Bulletin 79: 855–76.

    Article  Google Scholar 

  • Weisner, S. E. B. 1993. Long-term competitive displacement of Typha latifolia by Typha angustifolia in a eutrophic lake. Oecologia 94: 451–56.

    Article  Google Scholar 

  • Weninger, J. M. and J. H. McAndrews. 1989. Late Holocene aggradation in the lower Humber River Valley, Toronto, Ontario. Canadian Journal of Earth Sciences 26: 1842–49.

    Google Scholar 

  • Wilcox, D. A., S. I. Apfelbaum, and R. D. Hiebert. 1985. Cattail invasion of sedge meadows following hydrologic disturbance in the Cowles Bog Wetland Complex, Indiana Dunes National Lakeshore. Wetlands 4: 115–28.

    Google Scholar 

  • Wilcox, D. A. and H. A. Simonin. 1987. A chronosequence of aquatic macrophyte communities in dune ponds. Aquatic Botany 28: 227–42.

    Article  Google Scholar 

  • Williamson, M. and A. H. Fitter. 1996. The varying success of invaders. Ecology 77: 1661–66.

    Article  Google Scholar 

  • Wright, H. E., Jr. and W. A. Watts. 1969. Glacial and vegetational history of northeastern Minnesota. Minnesota Geological Survey SP-11. Special Publications Series University of Minnesota, Minneapolis, Minnesota, USA.

    Google Scholar 

  • Wright, H. E., Jr., T. C. Winter, and H. L. Patton. 1963. Two pollen diagrams from southeastern Minnesota: problems in the regional late-glacial and postglacial vegetational history. Geological Society of America Bulletin 74: 1371–96.

    Article  Google Scholar 

  • Yu, Z., J. H. McAndrews, and D. Siddiqi. 1996. Influences of Holocene climate and water levels on vegetation dynamics of a lakeside wetland. Canadian Journal of Botany 74: 1602–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, J.G., Finkelstein, S.A. Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records. Wetlands 28, 1–16 (2008). https://doi.org/10.1672/07-40.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/07-40.1

Key Words

Navigation