Skip to main content
Log in

A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

A brackish water ecotone of coastal bays and lakes, mangrove forests, salt marshes, tidal creeks, and upland hammocks separates Florida Bay, Biscayne Bay, and the Gulf of Mexico from the freshwater Everglades. The Everglades mangrove estuaries are characterized by salinity gradients that vary spatially with topography and vary seasonally and inter-annually with rainfall, tide, and freshwater flow from the Everglades. Because of their location at the lower end of the Everglades drainage basin, Everglades mangrove estuaries have been affected by upstream water management practices that have altered the freshwater heads and flows and that affect salinity gradients. Additionally, interannual variation in precipitation patterns, particularly those caused to El Niño events, control freshwater inputs and salinity dynamics in these estuaries. Two major external drivers on this system are water management activities and global climate change. These drivers lead to two major ecosystem stressors: reduced freshwater flow volume and duration, and sea-level rise. Major ecological attributes include mangrove forest production, soil accretion, and resilience; coastal lake submerged aquatic vegetation; resident mangrove fish populations; wood stork (Mycteria americana) and roseate spoonbill (Platelea ajaja) nesting colonies; and estuarine crocodilian populations. Causal linkages between stressors and attributes include coastal transgression, hydroperiods, salinity gradients, and the “white zone” freshwater/estuarine interface. The functional estuary and its ecological attributes, as influenced by sea level and freshwater flow, must be viewed as spatially dynamic, with a possible near-term balancing of transgression but ultimately a long-term continuation of inland movement. Regardless of the spatio-temporal timing of this transgression, a salinity gradient supportive of ecologically functional Everglades mangrove estuaries will be required to maintain the integrity of the South Florida ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, R. P. 1942. The Roseate Spoonbill. Dover Publications, New York, NY, USA.

    Google Scholar 

  • Armentano, T. V., R. F. Doren, W. J. Platt, and T. Mullins. 1995. Effects of Hurricane Andrew on coastal and interior forests of southern Florida: overview and synthesis. Journal of Coastal Research Special Issue 2: 111–114.

    Google Scholar 

  • Bjork, R. D. and G. V. N. Powell. 1994. Relations between hydrologic conditions and quality and quantity of foraging habitat for roseate spoonbills and other wading bird in the C-111 basin. National Audubon Society final report to South Florida Research Center, Everglades National Park, Homestead, FL, USA.

  • Cahoon, D. R. and J. C. Lynch. 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves and Salt Marshes 1: 173–186.

    Article  Google Scholar 

  • Carter, R. W. G. 1988. Coastal Environments. Academic, London, UK.

    Google Scholar 

  • Chen, R. and R. R. Twilley. 1999. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22: 955–970.

    Article  Google Scholar 

  • Childers, D. L., J. N. Boyer, J. W. Fourqurean, R. Jaffe, R. D. Jones, and J. Trexler. 1999. Coastal oligotrophic ecosystems research—the coastal Everglades. Regional controls of population and ecosystem dynamics in an oligotrophic wetland-dominated coastal landscape. A research proposal to the Long-Term Ecological Research (LTER) in Land/Ocean Margin Ecosystems, National Science Foundation, Washington, DC, USA.

    Google Scholar 

  • Childers, D. L., J. N. Boyer, S. E. III. Davis, C. J. Madden, D. T. Rudnick, and F. H. Sklar. 2005. Nutrient concentration patterns in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnology & Oceanography (in press).

  • Craighead, F. C. 1968. The role of the alligator in shaping plant communities and maintaining wildlife in the southern Everglades. Florida Naturalist 41: 2–7, 69–74, 94.

    Google Scholar 

  • Craighead, F. C. 1971. The Trees of South Florida. University of Miami Press, Miami, FL, USA.

    Google Scholar 

  • Craighead, F. C., Sr. and V. C. Gilbert. 1962. The effects of Hurricane Donna on the vegetation of southern Florida. The Quarterly Journal of the Florida Academy of Sciences 25: 1–28.

    Google Scholar 

  • Davis, S. E., J. E. Cable, D. L. Childers, C. Coronado-Molina, J. W. Day, C. D. Hittle, C. J. Madden, D. T. Rudnick, E. Reyes, and F. H. Sklar. 2004. Importance of episodic storm events in controlling ecosystem structure and function in a Gulf Coast estuary. Journal of Coastal Restoration 20: 1198–1208.

    Article  Google Scholar 

  • Davis, S. E. III, D. L. Childers, J. W. Day, Jr., D. T. Rudnick, and F. H. Sklar. 2001a. Wetland-water column exchanges of carbon, nitrogen, and phosphorus in a Southern Everglades dwarf mangrove. Estuaries 24: 610–622.

    Article  CAS  Google Scholar 

  • Davis, S. E. III, D. L. Childers, J. W. Day, Jr., D. T. Rudnick, and F. H. Sklar. 2001b. Nutrient dynamics in vegetated and unvegetated areas of a southern Everglades mangrove creek. Estuarine Coastal Shelf Science 52: 753–768.

    Article  CAS  Google Scholar 

  • Davis, S. E. III, D. L. Childers, J. W. Day, Jr., D. T. Rudnick, and F. H. Sklar. 2003. Factors affecting the concentration and flux of materials in two southern Everglades mangrove wetlands. Marine Ecology Progress Series 253: 85–96.

    Article  CAS  Google Scholar 

  • Dumas, J. 2000. Roseate Spoonbill (Ajaia ajaia). In A. Poole and F. Gill (eds.) The Birds of North America. The Academy of Natural Science, Philidelphia, PA, USA.

    Google Scholar 

  • Dunson, W. A. and F. J. Mazzotti. 1989. Salinity as a limiting factor in the distribution of reptiles in Florida Bay: a theory for the estuarine origin of marine snakes and turtles. Bulletin of Marine Sciences 44: 229–244.

    Google Scholar 

  • Egler, F. E. 1952. Southeast saline Everglades vegetation, Florida, and its management. Vegetation 3: 213–265.

    Article  Google Scholar 

  • Jacobsen, T. 1983. Crocodilians and islands: status of the American alligator and the American crocodile in the lower Florida Keys. Florida Field Naturalist 11: 1–24.

    Google Scholar 

  • Joanen, T. 1969. Nesting ecology of the alligators in Louisiana. Proceedings of the Annual Conference Southeast Association of Game Fish Commission 23: 141–151.

    Google Scholar 

  • Koch, M. S. 1997. Rhizophora mangle (red mangrove) seedling development into the sapling stage across resource and stress gradients in subtropical Florida. Biotropica 29: 427–439.

    Article  Google Scholar 

  • Koch, M. S. and S. C. Snedaker. 1997. Factore influencing Rhizophora mangle L. seedling development in Everglades carbonate soils. Aquatic Botany 59: 87–98.

    Article  Google Scholar 

  • Krauss, K. W., J. A. Allen, and D. R. Cahoon. 2003. Differential vertical accretion and elevation change among aerial root type mangrove forests. Estuarine and Coastal Shelf Science 56: 251–259.

    Article  Google Scholar 

  • Kushlan, J. D., O. L. Bass Jr., and L. C. McEwan. 1982. Wintering waterfowl in Everglades National Park. Everglades National Park, South Florida Research Center, Homestead, FL, USA. Report T-670.

    Google Scholar 

  • Lauren, D. J. 1985. The effect of chronic saline exposure on the electrolyte balance, nitrogen metabolism, and corticosterone titer in the American alligator, Alligator mississippiensis. Comprehensive Biochemical Physiololgy 81A: 217–223.

    Article  CAS  Google Scholar 

  • Lorenz, J. J. 1997. The effects of hydrology on resident fishes of the Everglades mangrove zone. National Audubon Society Final Report to South Florida Research Center, Everglades National Park, Homestead, FL, USA.

  • Lorenz, J. J. 1999. The response of fishes to physical-chemical changes in the mangroves of northeast Florida Bay. Estuaries 22: 500–517.

    Article  Google Scholar 

  • Lorenz, J. J. 2000. The impact of water management on roseate spoonbills and their piscine prey in the coastal wetlands of Florida Bay. Ph.D. Dissertation, University of Miami, Coral Gables, FL, USA.

    Google Scholar 

  • Lorenz, J. J., J. C. Ogden, R. D. Bjork, and G. V. N. Powell. 2002. Nesting patterns of Roseate Spoonbills in Florida Bay 1935–1999: implications of landscape scale anthropogenic impacts. p. 555–598. In J. W. Porter and K. G. Porter (eds.) The Everglades, Florida Bay and Coral Reefs of the Florida Keys, an Ecosystem Sourcebook. CRC Press, Boca Raton, FL:555–598.

    Google Scholar 

  • Mazzotti, F. J. 1983. The ecology of Crocodylus acutus in Florida. Ph.D. Dissertation. Pennsylvania State University, University Park, PA, USA.

    Google Scholar 

  • Mazzotti, F. J. 1989. Factors affecting nesting success of the American crocodile, Crocodylus acutus, in Florida Bay. Bulletin of Marine Sciences 44: 220–228.

    Google Scholar 

  • Mazzotti, F. J., A. Dunbar-Cooper, and J. A. Kushlan. 1988. Desiccation and cryptic nest flooding as probable causes of embryonic mortality in the American crocodile, Crocodylus acutus, in Everglades National Park, Florida. Florida Scientist 52: 65–72.

    Google Scholar 

  • Mazzotti, F. J. and W. A. Dunson. 1984. Adaptations of Crocodylus acutus and alligator for life in saline water. Comprehensive Biochemical Physiololgy 79A: 641–646.

    Article  Google Scholar 

  • Mazzotti, F. J. and W. A. Dunson. 1989. Osmoregulation in crocodilians. American Zoology 29: 903–920.

    Google Scholar 

  • McIvor, C. C., J. A. Ley, and R. D. Bjork. 1994. Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes. p. 117–146. In S. M. Davis and J. C. Ogden (eds.) Everglades, the Ecosystem and its Restoration. St. Lucie Press, Delray Beach, FL, USA.

    Google Scholar 

  • Meeder, J. F., M. S. Ross, G. Telesnicki, P. L. Ruiz, and J. P. Sah. 1996. Vegetation analysis in the C-111/Taylor Slough basin. Document 1: The southeast saline Everglades revisited: a half-century of coastal vegetation change. Document 2: Marine transgression in the southeast saline Everglades, Florida: rates, causes and plant sediment responses. Southeast Environmental Research Program, Florida International University, Miami, FL, USA. Final report for Contract C-4244.

    Google Scholar 

  • Moler, P. E. 1991. American crocodile population dynamics. Florida Game and Freshwater Fish Commission, Tallahassee, FL, USA.

    Google Scholar 

  • Montague, C. L. and R. G. Wiegert. 1990. Salt marshes. In R. L. Myers and J. J. Ewel (eds.) Ecosystems of Florida. University of Central Florida Press, Orlando, FL, USA.

    Google Scholar 

  • Morrison, D. and D. L. Bean. 1997. Benthic macrophyte and invertebrate distribution and seasonally in the Everglades-Florida Bay ecotone. National Audubon Society Final Report to South Florida Research Center, Everglades National Park, Homestead, FL, USA.

  • Noe, G., D. L. Childers, and R. D. Jones. 2001. Phosphorus biogeochemistry and the impacts of phosphorus enrichment: why are the Everglades so unique? Ecosystems 4: 603–624.

    Article  CAS  Google Scholar 

  • Ogden, J. C. 1976. Crocodilian ecology in southern Florida. In National Park Service. Research in the Parks: Transactions of the National Park Centennial Symposium, 1971. United States Department of the Interior, National Park Service, Washington, DC, USA. Symposium Series No. 1.

    Google Scholar 

  • Ogden, J. C. 1994. A comparison of wading bird nesting colony dynamics (1931–1946 and 1974–1989) as an indication of ecosystem conditions in the southern Everglades. p. 533–570. In S. M. Davis and J. C. Ogden (eds.) Everglades: the Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.

    Google Scholar 

  • Ogden, J. C., J. A. Kushlan, and J. A. Tilmont. 1978. The food habits and nesting success of wood storks in the Everglades National Park in 1974. United States National Park Service, Washington, DC, USA. Natural Resources Report 16.

    Google Scholar 

  • Powell, G. V. N. and R. D. Bjork. 1990. Relationships between hydrologic conditions and quality and quantity of foraging habitat for roseate spoonbills and other wading birds in the C-111 basin. National Audubon Society second annual report to South Florida Research Center, Everglades National Park, Homestead, FL, USA.

  • Powell, G. V. N., R. D. Bjork, J. C. Ogden, R. T. Paul, A. H. Powell, and W. B. Robertson, Jr. 1989. Population trends of some South Florida wading birds. Wilson Bulletin 101: 436–457.

    Google Scholar 

  • Ross, M. S., E. E. Gaiser, J. F. Meeder, and M. T. Lewin. 2002. Multi-taxon analysis of the “white zone”: A common ecotonal feature of the South Florida coastal wetlands. p. 205–238. In J. W. Porter and K. G. Porter (eds.) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: an Ecosystem Sourcebook. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Ross, M. S., E. E. Gaiser, J. F. Meeder, and M. T. Lewin. 2002. Multi-taxon analysis of the “White Zone,” a common ecotonal feature of South Florida coastal wetlands. p. 205–238. In J. W. Porter and K. G. Porter (eds.) Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Delray Beach, FL, USA.

    Google Scholar 

  • Ross, M. S., J. F. Meeder, J. P. Sah, P. L. Ruiz, and G. J. Telesnicki. 2000. The southeast saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11: 101–112.

    Article  Google Scholar 

  • Rudnick, D. T., Z. Chen, D. L. Childers, J. N. Boyer, and T. D. Fontaine. 1999. Phosphorus and nitrogen inputs in Florida Bay: the importance of the Everglades watershed. Estuaries 22: 398–416.

    Article  CAS  Google Scholar 

  • Smith, T. J. III, M. B. Robblee, R. Wanless, and T. W. Doyle. 1994. Mangroves, hurricanes, and lightning strikes. Bioscience 44: 256–262.

    Article  Google Scholar 

  • Sutula, M., B. Perez, E. Reyes, D. Childers, S. Davis, J. Day, D. Rudnick, and F. Sklar. 2003. Factors affecting spatial and temporal variability in material exchange between the Southeastern Everglades wetlands and Florida Bay (USA). Estuarine Coastal and Shelf Science 56: 1–25.

    Article  Google Scholar 

  • Tamarack, J. L. 1988. Georgia’s coastal island alligators, variations and habitat and prey availability. p. 105–118. In Proceedings of the Eighth Working Meeting of the Crocodile Specialist Group, IUCN—Gland, Switzerland.

    Google Scholar 

  • Trexler, J. C. and W. F. Loftus. 2000. Analysis of relationships of Everglades fish with hydrology using long-term data bases from the Everglades National Park. Report to Everglades National Park, Homestead, FL, USA.

  • Trexler, J. C., W. F. Loftus, F. Jordan, J. Lorenz, J. Chick, and R. M. Kobza. 2001. Empirical assessment of fish introductions in a subtropical wetland: an evaluation of contrasting views. Biological Invasions 2: 265–277.

    Article  Google Scholar 

  • Twilley, R. R. 1998. Mangrove wetlands. p. 445–473. In M. G. Messina and W. H. Conner (eds.) Southern Forested Wetlands Ecology and Management. CRC Press, Delray Beach, FL, USA.

    Google Scholar 

  • VanZee, R. 1999. Natural System Model version 4.5 documentation report. South Florida Water Management District, West Palm Beach, FL, USA.

    Google Scholar 

  • Wanless, H. R., P. Oleck, L. P. Tedesco, and B. E. Hall. 2000. Next 100 years of evolution of the Greater Everglades ecosystem in response to anticipated sea level rise: nature, extent and causes. Greater Everglades Ecosystem Restoration Science Conference 2000: 174–176.

    Google Scholar 

  • Wanless, H. R., R. W. Parkinson, and L. P. Tedesco. 1994. Sea level control on stability of Everglades wetlands. p. 199–223. In S. M. Davis and J. C. Ogden (eds.) Everglades: the Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.

    Google Scholar 

  • Wanless, H. R., L. P. Tedesco, J. A. Risi, B. G. Bischof, and S. Gelsanliter. 1995. The Role of Storm Processes on the Growth and Evolution of Coastal and Shallow Marine Sedimentary Environments in South Florida. Field Trip Guide, The 1st SEPM Congress on Sedimentary Geology, St. Petersburg, FL, USA.

    Google Scholar 

  • Wanless, H. R. and B. Vlaswinkel. 2005. Coastal landscape and channel evolution affecting critical habitats at Cape Sable, Everglades National Park, Florida. Final Report to Everglades National Park, United States Department of the Interior, Homestead, FL, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, S.M., Childers, D.L., Lorenz, J.J. et al. A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands 25, 832–842 (2005). https://doi.org/10.1672/0277-5212(2005)025[0832:ACMOEI]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2005)025[0832:ACMOEI]2.0.CO;2

Key Words

Navigation