Skip to main content
Log in

Effects of environmental variations on CO2 Efflux from a Tropical Peatland in eastern Sumatra

  • Note
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

CO2 efflux from tropical peat swamp substrates was measured under three different land uses (selectively logged forest, recently burned and cleared forest, and agriculture) in Jambi Province, eastern Sumatra over a six-month period that incorporated parts of both the major wet and dry seasons. Clearance of peat swamp forest and cultivation led to increased emissions: mean CO2 effluxes ranged from 2.59 ± 0.22 μmolCO2 m−2 sec-1 for peat beneath selectively logged forest to 4.44 ± 1.16 μmolCO2 m−2 sec-1 beneath recently burned and cleared forest to 5.58 ± 1.34 μmolCO2 m−2 sec-1 beneath settled agriculture. Mean CO2 effluxes were significantly correlated with soil temperature at 20 cm depth (Q10 = 2.5) and water-table position. We combined SPOT satellite and CO2 efflux data to establish that the conversion of selectively logged forest to agricultural land has led to a substantial increase in annual emissions of CO2-C in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Aerts, R. and F. Ludwig. 1997. Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biology and Biochemistry 29: 1691–1698.

    Article  CAS  Google Scholar 

  • Chapman, S. J. and M. Thurlow. 1996. The influence of climate on CO2 and CH4 emissions from organic soils. Agricultural and Forest Meteorology 79: 205–217.

    Article  Google Scholar 

  • Chimner, R. A. 2004. Soil respiration rates of tropical peatlands in Micronesia and Hawaii. Wetlands 24: 51–56.

    Article  Google Scholar 

  • Chimner, R. A. and D. J. Copper. 2003. Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biology and Biochemistry 35: 345–351.

    Article  CAS  Google Scholar 

  • Couturier, S., D. Taylor, F. Siegert, A. Hoffmann, and M. Q. Bao. 2001. ERS SAR backscatter—A potential real-time indicator of the proneness of modified rainforests to fire. Remote Sensing of Environment 76: 410–417.

    Article  Google Scholar 

  • Crutzen, P. J. and M. O. Andreae. 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250: 1669–1678.

    Article  CAS  PubMed  Google Scholar 

  • Fearnside, P. M. 2000. Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climate Change 46: 115–158.

    Article  CAS  Google Scholar 

  • Furukawa, H. 1994. Coastal Wetlands of Indonesia: Environment, Subsistence and Exploitation. Kyoto University Press, Kyoto, Japan.

    Google Scholar 

  • Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecological Applications 1: 182–195.

    Article  Google Scholar 

  • Hadi, A., M. Haridi, K. Inubushi, E. Purnomo, F. Razie, and H. Tsuruta. 2001. Effects of land-use changes in tropical peat soil on the microbial population and emission of greenhouse gases. Microbes and Environments 16: 79–86.

    Article  Google Scholar 

  • Inubushi, K., Y. Furukawa, A. Hadi, E. Purnomo, and H. Tsuruta. 2003. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 52: 603–608.

    Article  CAS  PubMed  Google Scholar 

  • Inubushi, K., A. Hadi, M. Okazaki, and K. Yonebayashi. 1998. Effect of converting wetland forest to sago palm plantations on methane gas flux and organic carbon dynamics in tropical peat soil. Hydrological Processes 12: 2073–2080.

    Article  Google Scholar 

  • IPCC 1996. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • IPCC 2001. Climate Change 2001: Scientific Basis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Janssens, I. A., A. S. Kowalski, B. Longdoz, and R. Ceulemans. 2000. Assessing forest soil CO2 efflux: an in situ comparison of four techniques. Tree Physiology 20: 23–32.

    PubMed  Google Scholar 

  • Kalbitz, K., W. Geyer, and S. Geyer. 1999. Spectroscopic properties of dissolved humic substances—a reflection of land use history in a fen area. Biogeochemistry 47: 219–238.

    CAS  Google Scholar 

  • Laumonier, Y. 1997. The Vegetation and Physiography of Sumatra. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Lessard, R., P. Rochette, E. Topp, E. Pattey, R. L. Desjardins, and G. Beaumont. 1994. Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites. Canadian Journal of Soil Science 74: 139–146.

    CAS  Google Scholar 

  • Mitra, S., R. Wassmann, and P. L. G. Vlek. 2005. An appraisal of global wetland area and its organic carbon stock. Current Science 88: 25–35.

    CAS  Google Scholar 

  • Murayama, S. and Z. A. Bakar. 1996. Decomposition of tropical soils 2. Estimation of in situ decomposition by measurement of CO2 flux. Japan Agricultural Research Quarterly 30: 153–158.

    Google Scholar 

  • Page, S. E., F. Siegert, J. O. Rieley, H. D. V. Boehm, A. Jaya, and S. Limin. 2003. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420: 61–65.

    Article  Google Scholar 

  • Raich, J. W. and W. H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B: 81–99.

    CAS  Google Scholar 

  • Rosenzweig, C. and D. Hillel. 2000. Soils and global climate changes: challenges and opportunities. Soil Science 165: 47–56.

    Article  CAS  Google Scholar 

  • Silvola, J., J. Alm, U. Ahlholm, H. Nykänen, and P. J. Martikainen. 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. Journal of Ecology 84: 219–228.

    Article  Google Scholar 

  • Stolle, F., K. M. Chomitz, E. F. Lambin, and T. P. Tomich. 2003. Land use and vegetation fires in Jambi Province, Sumatra, Indonesia. Forest Ecology and Management, 179: 277–292.

    Article  Google Scholar 

  • Stolle, F. and T. P. Tomich. 1999. The 1997–1998 fire event. Nature and Resources 35: 22–30.

    Google Scholar 

  • Taylor, D. and P. G. Sanderson. 2002 Global changes, mangrove forests and implications for hazards along continental shorelines, p. 203–226. In R. Sidle (ed.) Environmental Change and Geomorphic Hazards in Forests, IUFRO Research Series 9, Wallingford, U.K.

  • Tinker, P. B., J. S. I. Ingram, and S. Struwe. 1996. Effects of slash and burn agriculture and deforestation on climate change. Agriculture, Ecosystems and Environment 58: 13–22.

    Article  Google Scholar 

  • Van Nieuwstadt, M. G. L. and D. Sheil. 2005. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. Journal of Ecology 93: 191–201.

    Article  Google Scholar 

  • Waelbroeck, C. 1993. Climate soil processes in the presence of permafrost—a systems modelling approach. Ecological Modelling 69: 185–225.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M., Taylor, D. & Inubushi, K. Effects of environmental variations on CO2 Efflux from a Tropical Peatland in eastern Sumatra. Wetlands 26, 612–618 (2006). https://doi.org/10.1672/0277-5212(2006)26[612:EOEVOC]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[612:EOEVOC]2.0.CO;2

Key Words

Navigation