Skip to main content
Log in

The carbon balance of North American wetlands

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr−1, although the uncertainty around this estimate is greater than 100%, with the largest unknown being the role of carbon sequestration by sedimentation in freshwater mineral-soil wetlands. We estimate that North American wetlands emit 9 Tg methane (CH4) yr−1; however, the uncertainty of this estimate is also greater than 100%. With the exception of estuarine wetlands, CH4 emissions from wetlands may largely offset any positive benefits of carbon sequestration in soils and plants in terms of climate forcing. Historically, the destruction of wetlands through land-use changes has had the largest effects on the carbon fluxes and consequent radiative forcing of North American wetlands. The primary effects have been a reduction in their ability to sequester carbon (a small to moderate increase in radiative forcing), oxidation of their soil carbon reserves upon drainage (a small increase in radiative forcing), and reduction in CH4 emissions (a small to large decrease in radiative forcing). It is uncertain how global changes will affect the carbon pools and fluxes of North American wetlands. We will not be able to predict accurately the role of wetlands as potential positive or negative feedbacks to anthropogenic global change without knowing the integrative effects of changes in temperature, precipitation, atmospheric carbon dioxide concentrations, and atmospheric deposition of nitrogen and sulfur on the carbon balance of North American wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Alford, D. P., R. D. Delaune, and C. W. Lindau. 1997. Methane flux from Mississippi River deltaic plain wetlands. Biogeochemistry 37: 227–236.

    Article  CAS  Google Scholar 

  • Armentano, T. B. and E. S. Menges. 1986. Patterns of change in the carbon balance of organic soilwetlands of the temperate zone. Journal of Ecology 74: 755–774.

    Article  CAS  Google Scholar 

  • Aselmann, I. and P. J. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8: 307–359.

    Article  CAS  Google Scholar 

  • Barker, J. R., G. A. Baumgardner, D. P. Turner, and J. J. Lee. 1996. Carbon dynamics of the conservation and wetland reserve program. Journal of Soil and Water Conservation 51: 340–346.

    Google Scholar 

  • Bartlett, D. S., K. B. Bartlett, J. M. Hartman, R. C. Harriss, D. I. Sebacher, R. Pelletier-Travis, D. D. Dow, and D. P. Brannon. 1989. Methane emissions from the Florida Everglades: patterns of variability in a regional wetland ecosystem. Global Biogeochemical Cycles 3: 363–374.

    Article  CAS  Google Scholar 

  • Bartlett, K. B., D. S. Bartlett, R. C. Harriss, and D. I. Sebacher. 1987. Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4: 183–202.

    Article  CAS  Google Scholar 

  • Bartlett, K. B. and R. C. Harriss. 1993. Review and assessment of methane emissions from wetlands. Chemosphere 26: 261–320.

    Article  CAS  Google Scholar 

  • Bartlett, K. B., R. C. Harriss, and D. I. Sebacher. 1985. Methane flux from coastal salt marshes. Journal of Geophysical Research 90: 5710–5720.

    Article  CAS  Google Scholar 

  • Batjes, N. H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47: 151–163.

    Article  CAS  Google Scholar 

  • Birdsey, R. A. 1992. Carbon storage and accumulation in United States forest ecosystems. Forest Service, Washington, DC, USA. General Technical Report WO-59.

    Google Scholar 

  • Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and D. Raynaud. 1995. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374: 46–49.

    Article  CAS  Google Scholar 

  • Bourne, J. 2000. Louisiana’s vanishing wetlands: going, going … Science 289: 1860–1863.

    Article  CAS  PubMed  Google Scholar 

  • Bridgham, S. D., C. A. Johnston, J. Pastor, and K. Updegraff. 1995. Potential feedbacks of northern wetlands on climate change. BioScience 45: 262–274.

    Article  Google Scholar 

  • Bridgham, S. D., J. P. Megonigal, J. K. Keller, C. Trettin, and N. B. Bliss. 2007. Wetlands. In Sate of the Carbon Cycle Report — North America, Synthesis and Assessment Product 2.2. U.S. Climate Change Program. (in press)

  • Bridgham, S. D., C.-L. Ping, J. L. Richardson, and K. Updegraff. 2000. Soils of northern peatlands: Histosols and Gelisols. p. 343–370. In J. L. Richardson and M. J. Vepraskas (eds.) Wetland Soils: Genesis, Hydrology, Landscapes, and Classification. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Bridgham, S. D., K. Updegraff, and J. Pastor. 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79: 1545–1561.

    Google Scholar 

  • Brown, M. J., G. M. Smith, and J. McCollum. 2001. Wetland forest statistics for the south Atlantic states. Southern Research Station, U.S. Forest Service, Asheville, NC, USA. RB-SRS-062.

    Google Scholar 

  • Burke, R. A., T. R. Barber, and W. M. Sackett. 1988. Methane flux and stable hydrogen and carbon isotope composition of sedimentary methane from the Florida Everglades. Global Biogeochemical Cycles 2: 329–340.

    Article  CAS  Google Scholar 

  • Cao, M., K. Gregson, and S. Marshall. 1998. Global methane emission from wetlands and its sensitivity to climate change. Atmospheric Environment 32: 3293–3299.

    Article  CAS  Google Scholar 

  • Carroll, P. C. and P. M. Crill. 1997. Carbon balance of a temperate poor fen. Global Biogeochemical Cycles 11: 349–356.

    Article  CAS  Google Scholar 

  • Chanton, J. P., G. J. Whiting, J. D. Happell, and G. Gerard. 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany 46: 111–128.

    Article  CAS  Google Scholar 

  • Chanton, J. P., G. J. Whiting, W. J. Showers, and P. M. Crill. 1992. Methane flux from Peltandra virginica: stable isotope tracing and chamber effects. Global Biogeochemical Cycles 6: 15–31.

    Article  CAS  Google Scholar 

  • Chappellaz, J., T. Bluniert, D. Raynaud, J. M. Barnola, J. Schwander, and B. Stauffert. 1993. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366: 443–445.

    Article  CAS  Google Scholar 

  • Chimner, R. A. and D. J. Cooper. 2003. Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains. Canadian Journal of Botany 891: 477–491.

    Article  Google Scholar 

  • Chmura, G. L., S. C. Anisfeld, D. R. Cahoon, and J. C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1111.

    Article  CAS  Google Scholar 

  • Cleary, J., N. T. Roulet, and T. R. Moore. 2005. Greenhouse gas emissions from Canadian peat extraction, 1990–2000: A lifecycle analysis. Ambio 34: 456–461.

    PubMed  Google Scholar 

  • Clymo, R. S., J. Turunen, and K. Tolonen. 1998. Carbon accumulation in peatland. Oikos 81: 368–388.

    Article  Google Scholar 

  • Coles, J. R. P. and J. B. Yavitt. 2004. Linking belowground carbon allocation to anaerobic CH4 and CO2 production in a forested peatland, New York state. Geomicrobiology Journal 21: 445–454.

    Article  CAS  Google Scholar 

  • Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-79/31.

    Google Scholar 

  • Craft, C. B. and W. P. Casey. 2000. Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands 20: 323–332.

    Article  Google Scholar 

  • Dahl, T. E. 1990. Wetland losses in the United States 1780’s to 1980’s. Fish and Wildlife Service, Washington, DC, USA.

    Google Scholar 

  • Dahl, T. E. 2000. Status and Trends of Wetlands in the Conterminous United States 1986 to 1997. Fish and Wildlife Service, Washington, DC, USA.

    Google Scholar 

  • Dahl, T. E. and C. E. Johnson. 1991. Status and Trends of Wetlands in the Conterminous United States, Mid-1970’s to Mid-1980’s. Fish and Wildlife Service, Washington, DC, USA.

    Google Scholar 

  • Davidson, I., R. Vanderkam, and M. Padilla. 1999. Review of wetland inventory information in North America. Supervising Scientist, Canberra, Australia. Supervising Scientist Report 144.

    Google Scholar 

  • Day Jr., J. W., G. P. Shafer, L. D. Britsch, D. J. Reed, S. R. Hawes, and D. Cahoon. 2000. Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change. Estuaries 23: 425–438.

    Article  Google Scholar 

  • Day Jr., J. W., G. P. Shaffer, D. J. Reed, D. R. Cahoon, L. D. Britsch, and S. R. Hawes. 2001. Patterns and processes of wetland loss in coastal Louisiana are complex: A reply to Turner 2001. Estimating the indirect effects of hydrologic change on wetland loss: If the earth is curved, then how would we know it? Estuaries 24: 647–651.

    Google Scholar 

  • DeLaune, R. D., C. J. Smith, and W. H. Patrick Jr. 1983. Methane release from Gulf coast wetlands. Tellus 35B: 8–15.

    Article  CAS  Google Scholar 

  • Dise, N. 1993. Methane emissions from Minnesota peatlands: spatial and seasonal variability. Global Biogeochemical Cycles 7: 123–142.

    Article  Google Scholar 

  • Dise, N. B. and E. S. Verry. 2001. Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain. Biogeochemistry 53: 143–160.

    Article  CAS  Google Scholar 

  • Dugan, P. (ed.) 1993. Wetlands in Danger—A World Conservation Atlas. Oxford University Press, New York, NY, USA.

    Google Scholar 

  • Ehhalt, D., M. Prather, F. Dentener, E. Dlugokencky, E. Holland, I. Isaksen, J. Katima, V. Kirchhoff, P. Matson, P. Midgley, and M. Wang. 2001. Atmospheric chemistry and greenhouse gases. p. 239–287. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Eswaran, H., E. Van Den Berg, and J. Kimble. 1995. Global soil carbon resources. p. 27–43. In R. Lal, J. Kimble, E. Levine, and B. A. Stewart (eds.) Soils and Global Change. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Euliss, N. H., R. A. Gleason, A. Olness, R. L. McDougal, H. R. Murkin, R. D. Robarts, R. A. Bourbonniere, and B. G. Warner. 2006. North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361: 179–188.

    Article  CAS  PubMed  Google Scholar 

  • FAO. 1991. The Digitized Soil Map of the World. Food and Agriculture Organization, Rome, Italy. World Soil Resource Report, 64.

    Google Scholar 

  • FAO-UNESCO. 1974. Soil Map of the World (1:5,000,000). UNESCO, Paris, France.

    Google Scholar 

  • Field, D. W., A. J. Reyer, P. V. Genovese, and B. D. Shearer. 1991. Coastal wetlands of the United States: an accounting of a valuable natural resource. Strategic Assessment Branch, Ocean Assessments Division, Office of Oceanography and Marine Assessment, National Ocean Service, National Oceanic and Atmospheric Administration, Washington, DC, USA.

    Google Scholar 

  • Finlayson, C. M., N. C. Davidson, A. G. Spiers, and N. J. Stevenson. 1999. Global wetland inventory-current status and future priorities. Marine Freshwater Research 50: 717–727.

    Article  Google Scholar 

  • Fletcher, S. E. M., P. P. Tans, L. M. Bruhwiler, J. B. Miller, and M. Heimann. 2004b. CH sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes. Global Biogeochemical Cycles 18:doi:10.1029/2004GB002223.

  • Fletcher, S. E. M., P. P. Tans, L. M. Bruhwiler, J. B. Miller, and M. Heimann. 2004b. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 2. Inverse modeling of CH4 fluxes from geographical regions. Global Biogeochemical Cycles 18:doi:10.1029/2004GB002224.

  • Frayer, W. E., T. J. Monahan, D. C. Bowden, and F. A. Graybill. 1983. Status and Trends of Wetlands and Deepwater Habitats in the Conterminous United States, 1950s to 1970s. Dept. of Forest and Wood Sciences, Colorado State University, Fort Collins, CO, USA.

    Google Scholar 

  • Freeman, C., N. Fenner, N. J. Ostie, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes, and J. Hudson. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430: 195–198.

    Article  CAS  PubMed  Google Scholar 

  • Frolking, S. and P. Crill. 1994. Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: measurement and modeling. Global Biogeochemical Cycles 8: 385–397.

    Article  CAS  Google Scholar 

  • Frolking, S., N. Roulet, and J. Fuglestvedt. 2006. How northern peatlands influence the earth’s radiative budget: Sustained methane emission versus sustained carbon sequestration. JGR-Biogeosciences III: G01008, doi:01010.01029/02005JG000091.

    Article  CAS  Google Scholar 

  • Frolking, S., N. T. Roulet, T. R. Moore, P. M. Lafleur, J. L. Bubier, and P. M. Crill. 2002. Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada. Global Biogeochemical Cycles 16, 10.1029.2001GB00147, 02002.

  • Gauci, V., E. Matthews, N. Dise, B. Walter, D. Koch, G. Granberg, and M. Vile. 2004. Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proceeding of the National Academy of Sciences, USA 101: 12583–12587.

    Article  CAS  Google Scholar 

  • Gedney, N., P. M. Cox, and C. Huntingford. 2004. Climate feedbacks from methane emissions. Geophysical Research Letters 31: L20503, doi:20510.21029/22004GL020919.

    Article  CAS  Google Scholar 

  • Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182–195.

    Article  Google Scholar 

  • Gunnison, D., R. L. Chen, and J. M. Brannon. 1983. Relationship of Materials in Flooded Soils and Sediments to the Water-Quality of Reservoirs.1. Oxygen-Consumption Rates. Water Research 17: 1609–1617.

    Article  CAS  Google Scholar 

  • Hall, J. V., W. E. Frayer, and B. O. Wilen. 1994. Status of Alaska Wetlands. U.S. Fish and Wildlife Service, Anchorage, AK, USA.

    Google Scholar 

  • Halsey, L. A., D. H. Vitt, and L. D. Gignac. 2000. Sphagnumdominated peatlands in North America since the last glacial maximum: their occurrence and extent. The Bryologist 103: 334–352.

    Article  Google Scholar 

  • Hanson, A. R. and L. Calkins. 1996. Wetlands of the Maritime Provinces: Revised Documentation for the Wetlands Inventory. Canadian Wildlife Service, Atlantic Region, Sackville, New Brunswick, Canada. Technical Report No. 267.

    Google Scholar 

  • Happell, J. D., J. P. Chanton, G. J. Whiting, and W. J. Showers. 1993. Stable isotopes as tracers of methane dynamics in Everglades marshes with and without active populations of methane oxidizing bacteria. Journal of Geophysical Research 98: 14771–14782.

    Article  Google Scholar 

  • Harden, J. W., J. M. Sharpe, W. J. Parton, D. S. Ojima, T. L. Fries, T. G. Huntington, and S. M. Dabney. 1999. Dynamic replacement and loss of soil carbon on eroding cropland. Global Biogeochemical Cycles 13: 885–901.

    Article  CAS  Google Scholar 

  • Harriss, R. C. and D. I. Sebacher. 1981. Methane flux in forested freshwater swamps of the southeastern United States. Geophysical Research Letters 8: 1002–1004.

    Article  CAS  Google Scholar 

  • Harriss, R. C., D. I. Sebacher, K. B. Bartlett, D. S. Bartlett, and P. M. Crill. 1988. Sources of atmospheric methane in the south Florida environment. Global Biogeochemical Cycles 2: 231–243.

    Article  CAS  Google Scholar 

  • Harriss, R. C., D. I. Sebacher, and F. P. Day, Jr. 1982. Methane flux in the Great Dismal Swamp. Nature 297: 673–674.

    Article  CAS  Google Scholar 

  • Hines, M. E. and K. N. Duddleston. 2001. Carbon flow to acetate and C1 compounds in northern wetlands. Geophysical Research Letters 28: 4251–4254.

    Article  CAS  Google Scholar 

  • Hoosbeek, M. R., M. Lukac, D. van Dam, D. L. Godbold, E. J. Velthorst, F. A. Biondi, A. Peressotti, M. F. Cotrufo, P. de Angelis, and G. Scarascia-Mugnozza. 2004. More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased priming effect? Global Biogeochemical Cycles 18: GB1040.

    Article  CAS  Google Scholar 

  • Hoosbeek, M. R., N. van Breeman, F. Berendse, P. Brosvernier, H. Vasander, and B. Wallén. 2001. Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation. New Phytologist 150: 459–463.

    Article  Google Scholar 

  • Hussein, A. H., M. C. Rabenhorst, and M. L. Tucker. 2004. Modeling of carbon sequestration in coastal marsh soils. Soil Science Society of America Journal 68: 1786–1795.

    CAS  Google Scholar 

  • Johnston, C. A., S. D. Bridgham, and J. P. Schubauer-Berigan. 2001. Nutrient dynamics in relation to geomorphology of riverine wetlands. Soil Science Society of America Journal 65: 557–577.

    Article  CAS  Google Scholar 

  • Joosten, H. and D. Clarke. 2002. Wise Use of Mires and Peatlands — Background Principles including a Framework for Decision-Making. International Mire Conservation Group and International Peat Society, Saarijärvi, Finland.

    Google Scholar 

  • Kearney, M. S., A. S. Rogers, J. R. G. Townshend, E. Rizzo, D. Stutzer, J. C. Stevenson, and K. Sundborg. 2002. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos 83: 173.

    Article  Google Scholar 

  • Kearney, M. S. and J. C. Stevenson. 1991. Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research 7: 403–415.

    Google Scholar 

  • Keller, J. K., S. D. Bridgham, C. T. Chapin, and C. M. Iversen. 2005. Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen. Soil Biology and Biochemistry 37: 1197–1204.

    Article  CAS  Google Scholar 

  • Keller, J. K., A. K. Reist, S. D. Bridgham, L. E. Kellogg, and C. M. Iversen. 2006. Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatlands gradient. Journal of Geophysical Research-Biogeosciences:111, G03006, doi:10.1029/2005JG000152.

  • Kelly, C. A., C. S. Martens, and W. Ussier III. 1995. Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography 40: 1112–1129.

    Article  Google Scholar 

  • Kelly, C. A., J. W. M. Rudd, R. A. Bodaly, N. T. Roulet, V. L. StLouis, A. Heyes, T. R. Moore, S. Schiff, R. Aravena, K. J. Scott, B. Dyck, R. Harris, B. Warner, and G. Edwards. 1997. Increase in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environmental Science and Technology 31: 1334–1344.

    Article  CAS  Google Scholar 

  • Kim, H. Y., M. Lieffering, S. Miura, K. Kobayashi, and M. Okada. 2001. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytologist 150: 223–229.

    Article  CAS  Google Scholar 

  • Kim, J., S. B. Verma, and D. P. Billesbach. 1998. Seasonal variation in methane emission from a temperate Phragmitesdominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology 5: 443–440.

    Google Scholar 

  • King, G. M. and W. J. Wiebe. 1978. Methane release from soils of a Georgia salt marsh. Geochimica et Cosmochimica Acta 42: 343–348.

    Article  CAS  Google Scholar 

  • Kivinen, E. and P. Pakarinen. 1981. Geographical distribution of peat resources and major peatland complex types in the world. Annales Academiae Scientiarum Fennicae Series A. III. 132: 1–28.

    Google Scholar 

  • Kristensen, E., S. I. Ahmed, and A. H. Devol. 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest? Limnology and Oceanography 40: 1430–1437.

    Article  CAS  Google Scholar 

  • Lansdown, J., P. Quay, and S. King. 1992. CH4 production via CO2 reduction in a temperate bog: a source of 13C-depleted CH4. Geochimica et Comsochimica Acta 56: 3493–3503.

    Article  CAS  Google Scholar 

  • Lappalainen, E. 1996. General review on world peatland and peat resources. p. 53–56. In E. Lappalainen (ed.) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyskä, Finland.

    Google Scholar 

  • Lichter, J., S. H. Barron, C. E. Bevacqua, A. C. Finzi, K. F. Irving, E. A. Stemmler, and W. H. Schlesinger. 2005. Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86: 1835–1847.

    Article  Google Scholar 

  • Lugo, A. E. and S. C. Snedaker. 1974. The ecology of mangroves. Annual Review of Ecology and Systematics 5: 39–64.

    Article  Google Scholar 

  • Lynch-Stewart, P., I. Kessel-Taylor, and C. Rubec. 1999. Wetlands and Government: Policy and Legislation for Wetland Conservation in Canada. North American Wetlands Conservation Council (Canada) No. 1999–1.

  • Maltby, E. and P. Immirzi. 1993. Carbon dynamics in peatlands and other wetland soils, regional and global perspectives. Chemosphere 27: 999–1023.

    Article  CAS  Google Scholar 

  • Malterer, T. J. 1996. Peat resources of the United States. p. 253–260. In E. Lappalainen (ed.) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyskä, Finland.

    Google Scholar 

  • Marsh, A. S., D. P. Rasse, B. G. Drake, and J. P. Megonigal. 2005. Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries 28: 694–704.

    Article  CAS  Google Scholar 

  • Matthews, E. and I. Fung. 1987. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles 1: 61–86.

    Article  CAS  Google Scholar 

  • Meade, R. H., T. R. Yuzyk, and T. J. Day. 1990. Movement and storage of sediments in rivers of the United States and Canada. p. 255–280. In M. G. Wolman and H. C. Riggs (eds.) Surface Water Hydrology, Geol. of N. Am., 0–1. Geological Society of American, Boulder, CO, USA.

    Google Scholar 

  • Megonigal, J. P. and W. H. Schlesinger. 2002. Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles 16: 1088, doi:1010.1029/2001GB001594, 002002.

    Article  CAS  Google Scholar 

  • Megonigal, J. P., C. D. Vann, and A. A. Wolf. 2005. Flooding constraints on tree (Taxodium distichum) and herb growth responses to elevated CO2. Wetlands 25: 230–238.

    Article  Google Scholar 

  • Mendelssohn, I. A. and K. L. McKee. 2000. Saltmarshes and mangroves. p. 501–536. In M. G. Barbour and W. D. Billings (eds.) North American Terrestrial Vegetation. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Miller, D. N., W. C. Ghiorse, and J. B. Yavitt. 1999. Seasonal patterns and controls on methane and carbon dioxide fluxes in forested swamp pools. Geomicrobiology Journal 16: 325–331.

    Article  CAS  Google Scholar 

  • Mitra, S., R. Wassmann, and P. L. G. Vlek. 2005. An appraisal of global wetland area and its organic carbon stock. Current Science 88: 25–35.

    CAS  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands. Van Nostrand Reinhold, New York, NY, USA.

    Google Scholar 

  • Moore, T. R. 1997. Dissolved organic carbon: sources, sinks, and fluxes and role in the soil carbon cycle. p. 281–292. In R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart (eds.) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Moore, T. R. and N. T. Roulet. 1995. Methane emissions from Canadian peatlands. p. 153–164. In R. Lal, J. Kimble, E. Levine, and B. A. Stewart (eds.) Soils and Global Change. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Moore, T. R., N. T. Roulet, and J. M. Waddington. 1998. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change 40: 229–245.

    Article  CAS  Google Scholar 

  • Moser, M., C. Prentice, and S. Frazier. 1996. A global overview of wetland loss and degradation. in Ramsar 6th Meeting of the Conference of the Contracting Parties in Brisbane. Australia.

  • Naiman, R. J., T. Manning, and C. A. Johnston. 1991. Beaver population fluctuations and tropospheric methane emissions in boreal wetlands. Biogeochemistry 12: 1–15.

    Article  Google Scholar 

  • Najjar, R. G., H. A. Walker, P. J. Anderson, E. J. Barron, R. J. Bord, J. R. Gibson, V. S. Kennedy, C. G. Knight, J. P. Megonigal, R. E. O’Conner, C. D. Polsky, N. P. Psuty, B. A. Richards, L. G. Sorenson, E. M. Steele, and R. S. Swanson. 2000. The potential impacts of climate change on the mid-Atlantic coastal region. Climate Research 14: 219–233.

    Article  Google Scholar 

  • National Research Council. 2001. Compensating for Wetland Losses under the Clean Water Act. National Academy Press, Washington, DC, USA.

    Google Scholar 

  • National Wetlands Working Group. 1988. Wetlands of Canada. Sustainable Development Branch, Environment Canada, Ottawa, Ontario, and Polyscience Publications, Montreal, Quebec, Canada.

    Google Scholar 

  • Neff, J. C., W. D. Bowman, E. A. Holland, M. C. Fisk, and S. K. Schmidt. 1994. Fluxes of nitrous oxide and methane from nitrogen-amended soils in a Colorado alpine ecosystem. Biogeochemistry 27: 23–33.

    Article  CAS  Google Scholar 

  • Neubauer, S. C., W. D. Miller, and I. C. Anderson. 2000. Carbon cycling in a tidal freshwater marsh ecosystem: a carbon gas flux study. Marine Ecology Progress Series 199: 13–30.

    Article  CAS  Google Scholar 

  • NRCS. 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, second edition. Natural Resources Conservation Service, Washington, DC, USA.

    Google Scholar 

  • Odum, W. E., T. J. Smith III, J. K. Hoover, and C. C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States east coast: a community profile. U.S. Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-83/17.

    Google Scholar 

  • OECD. 1996. Guidelines for aid agencies for improved conservation and sustainable use of tropical and subtropical wetlands. Organization for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  • Oechel, W. C., S. Cowles, N. Grulke, S. J. Hastings, B. Lawrence, T. Prudhomme, G. Riechers, B. Strain, D. Tissue, and G. Vourlitis. 1994. Transient nature of CO2 fertilization in Arctic tundra. Nature 371: 500–503.

    Article  CAS  Google Scholar 

  • Olmsted, I. 1993. Wetlands of Mexico. p. 637–677. In D. F. Whigham, D. Dykjová, and S. Hejný (eds.) Wetlands of the World. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Ovenden, L. 1990. Peat accumulation in northern wetlands. Quaternary Research 33: 377–386.

    Article  Google Scholar 

  • Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, and M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436.

    Article  CAS  Google Scholar 

  • Pulliam, W. M. 1993. Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecological Monographs 63: 29–53.

    Article  Google Scholar 

  • Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T. Nakajima, G. Y. Shi, and S. Solomon. 2001. Radiative forcing of climate change. p. 349–416. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Rasse, D. P., G. Peresta, and B. G. Drake. 2005. Seventeen years of elevated CO2 exposure in a Chesapeake Bay wetland: sustained but contrasting responses of plant growth and CO2 uptake. Global Change Biology 11: 369–377.

    Article  Google Scholar 

  • Rieger, S., D. B. Schoephoster, and C. E. Furbush. 1979. Exploratory Soil Survey of Alaska. Soil Conservation Service, Anchorage, AK, USA.

    Google Scholar 

  • Robinson, S. D. and T. R. Moore. 1999. Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwestern Canada. Global Biogeochemical Cycles 13: 591–602.

    Article  CAS  Google Scholar 

  • Roulet, N. T. 2000. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada. Wetlands 20: 605–615.

    Article  Google Scholar 

  • Rubec, C. 1996. The status of peatland resources in Canada. p. 243–252. In E. Lappalainen (ed.) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyskä, Finland.

    Google Scholar 

  • Schipper, L. A. and K. R. Reddy. 1994. Methane production and emissions from four reclaimed and pristine wetlands of southeastern United States. Soil Science Society of America 58: 1270–1275.

    Article  CAS  Google Scholar 

  • Shannon, R. D. and J. R. White. 1994. A three year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry 27: 35–60.

    Article  Google Scholar 

  • Shurpali, N. J. and S. B. Verma. 1998. Micrometeorological measurements of methane flux in a Minnesota peatland during two growing seasons. Biogeochemistry 40: 1–15.

    Article  CAS  Google Scholar 

  • Smith, L. K. and W. M. Lewis, Jr. 1992. Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies. Global Biogeochemical Cycles 6: 323–338.

    Article  CAS  Google Scholar 

  • Smith, S. V., W. H. Renwick, R. W. Buddemeier, and C. J. Crossland. 2001. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochemical Cycles 15: 697–707.

    Article  CAS  Google Scholar 

  • Spalding, M., F. Blasco, and C. Field (eds.) 1997. World Mangrove Atlas. The International Society for Mangrove Ecosystems, Okinawa, Japan.

    Google Scholar 

  • Spiers, A. G. 1999. Review of international/continental wetland resources. Supervising Scientist, Canberra, Australia. Supervising Scientist Report 144.

    Google Scholar 

  • Stallard, R. F. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles 12: 231–257.

    Article  CAS  Google Scholar 

  • Strack, M., J. M. Waddington, and E.-S. Tuittila. 2004. Effect of water table drawdown on northern peatland methane dynamics: Implications for climate change. Global Biogeochemical Cycles 18: GB4003, doi:4010.1029/2003GB002209, 002004.

    Article  CAS  Google Scholar 

  • Tarnocai, C. 1998. The amount of organic carbon in various soil orders and ecological provinces in Canada. p. 81–92. In R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart (eds.) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Tarnocai, C., I. M. Kettles, and B. Lacelle. 2005. Peatlands of Canada. Ottawa. Agriculture and Agri-Food Canada, Research Branch, Ottawa, ON, Canada.

    Google Scholar 

  • Tissue, D. T. and W. C. Oechel. 1987. Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68: 401–410.

    Article  Google Scholar 

  • Tolonen, K. and J. Turunen. 1996. Accumulation rates of carbon in mires in Finland and implications for climactic change. Holocene 6: 171–178.

    Article  Google Scholar 

  • Trettin, C. C. and M. F. Jurgensen. 2003. Carbon cycling in wetland forest soils. p. 311–331. In J. M. Kimble, L. S. Heatth, R. A. Birdsey, and R. Lal (eds.) The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Trimble, S. W. and P. Crosson. 2000. Land use — US soil erosion rates — Myth and reality. Science 289: 248–250.

    Article  CAS  PubMed  Google Scholar 

  • Trumbore, S. E. and J. W. Harden. 1997. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. Journal of Geophysical Research 102: 28,817–28,830.

    Article  CAS  Google Scholar 

  • Turetsky, M. R., B. D. Amiro, E. Bosch, and J. S. Bhatti. 2004. Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Global Biogeochemical Cycles 18: GB4014, doi:1029/2004GB002222, 002004.

    Article  CAS  Google Scholar 

  • Turetsky, M. R., R. K. Wieder, L. A. Halsey, and D. Vitt. 2002. Current distribution and diminishing peatland carbon sink. Geophysical Research Letters 29: 10.1029/2001GL014000, 012002.

    Article  Google Scholar 

  • Turner, R. E. 1997. Wetland loss in the Northern Gulf of Mexico: multiple working hypotheses. Estuaries 20: 1–13.

    Article  Google Scholar 

  • Turunen, J., N. T. Roulet, and T. R. Moore. 2004. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles 18: GB3002, doi:3010.1029/2003GB002154.

    Article  CAS  Google Scholar 

  • Twilley, R. R., R. H. Chen, and T. Hargis. 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air and Soil Pollution 64: 265–288.

    Article  CAS  Google Scholar 

  • Updegraff, K., S. D. Bridgham, J. Pastor, P. Weishampel, and C. Harth. 2001. Response of CO2 and CH4 emissions in peatlands to warming and water-table manipulation. Ecological Applications 11: 311–326.

    Google Scholar 

  • Valiela, I., J. L. Bowen, and J. K. York. 2001. Mangrove forests: One of the world’s threatened major tropical environments. BioScience 51: 807–815.

    Article  Google Scholar 

  • Vann, C. D. and J. P. Megonigal. 2003. Elevated CO2 and water depth regulation of methane emissions: comparison of woody and non-woody wetland plant species. Biogeochemistry 63: 117–134.

    Article  CAS  Google Scholar 

  • Vile, M. A., S. D. Bridgham, R. K. Wieder, and M. Nov/’ak. 2003. Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands. Global Biogeochemical Cycles 17: 1058–1064.

    Article  CAS  Google Scholar 

  • Vitt, D. H., L. A. Halsey, I. E. Bauer, and C. Campbell. 2000. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Canadian Journal of Earth Sciences 37: 683–693.

    Article  CAS  Google Scholar 

  • Vitt, D. H., L. A. Halsey, and S. C. Zoltai. 1994. The bog landforms of continental western Canada in relation to climate and permafrost patterns. Arctic and Alpine Research 26: 1–13.

    Article  Google Scholar 

  • Walter, K. M., S. A. Zimov, J. P. Chaton, D. Verbyla, and F. S. Chapin III. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443: 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. S., J. A. Logan, M. B. McElroy, B. N. Duncan, I. A. Megretskaia, and R. M. Yantosca. 2004. A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochemical Cycles 18: GB3011, doi:101029/102003GB002180.

    Article  CAS  Google Scholar 

  • Watson, R. T., I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo, and D. J. Dokken. 2000. IPCC Special Report on Land Use, Land-Use Change and Forestry. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Webb, R. S. and T. Webb III. 1988. Rates of sediment accumulation in pollen cores from small lakes and mires of eastern North America. Quaternary Research 30: 284–297.

    Article  Google Scholar 

  • WEC. 2001. Survey of Energy Resources. http://www.worldenergy. org/wec-geis/publications/reports/ser/peat/peat.asp.

  • Werner, C., K. Davis, P. Bakwin, C. Yi, D. Hurst, and L. Lock. 2003. Regional-scale measurements of CH4 exchange from a tall tower over a mixed temperate/boreal lowland and wetland forest. Global Change Biology 9: 1251–1261.

    Article  Google Scholar 

  • West, A. E., P. D. Brooks, M. C. Fisk, L. K. Smith, E. A. Holland, C. H. Jaeger III, S. Babcock, R. S. Lai, and S. K. Schmidt. 1999. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochemistry 45: 243–264.

    Google Scholar 

  • Whiting, G. J. and J. P. Chanton. 1993. Primary production control of methane emissions from wetlands. Nature 364: 794–795.

    Article  CAS  Google Scholar 

  • Wickland, K. P., R. G. Striegl, S. K. Schmidt, and M. A. Mast. 1999. Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains. Global Biogeochemical Cycles 13: 101–113.

    Article  CAS  Google Scholar 

  • Wilson, J. O., P. M. Crill, K. B. Bartlett, D. I. Sebacher, R. C. Harriss, and R. L. Sass. 1989. Seasonal variation of methane emissions from a temperate swamp. Biogeochemistry 8: 55–71.

    Article  CAS  Google Scholar 

  • Wylynko, D. (ed.) 1999. Prairie wetlands and carbon sequestration: assessing sinks under the Kyoto Protocol. Institute for Sustainable Development, Ducks Unlimited Canada, and Wetlands International, Winnipeg, Manitoba, Canada.

    Google Scholar 

  • Yavitt, J. B. 1997. Methane and carbon dioxide dynamics in Typha latifolia (L.) wetlands in central New York state. Wetlands 17: 394–406.

    Article  Google Scholar 

  • Yavitt, J. B., R. K. Wieder, and G. E. Lang. 1993. CO2 and CH4 dynamics of a Sphagnum-dominated peatland in West Virginia. Global Biogeochemical Cycles 7: 259–274.

    Article  CAS  Google Scholar 

  • Yavitt, S. B., G. E. Yang, and A. J. Sexstone. 1990. Methane fluxes in wetland and forest soils, heaver ponds, and low order streams of temperate forest ecosystem. Journal of Geophysical Research 95: 22463–22474.

    Article  CAS  Google Scholar 

  • Zedler, J. B. and S. Kercher. 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environmental Resources 30: 39–74.

    Article  Google Scholar 

  • Zhuang, Q., J. M. Melillo, D. W. Kicklighter, R. G. Prin, A. D. McGuire, P. A. Steudler, B. S. Felzer, and S. Hu. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochemical Cycles 18: GB 3010, doi:3010.1029/2004GB002239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridgham, S.D., Megonigal, J.P., Keller, J.K. et al. The carbon balance of North American wetlands. Wetlands 26, 889–916 (2006). https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2

Key Words

Navigation