Skip to main content
Log in

Development of vegetation maps for assessing Everglades restoration progress

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

One critical component of any wetland restoration program is reliably documenting temporal changes in the spatial extent, pattern, and proportion of plant communities within the landscape. This study describes the development of a 2003 baseline vegetation map for a 42,635 ha wetland impoundment located in the northern portion of the remnant Everglades, Florida. Vegetation communities were photointerpreted and mapped with a 1/4 ha minimum mapping grid unit from 1:24,000 scale color infrared aerial photography utilizing 1st order analytical stereo-plotters. Results show an impoundment that has significantly changed in comparison to an earlier 1940s mapping effort. These included the loss of most of the tree island habitat and the establishment of large expanses of invasive cattail adjacent to and downstream of inflow structures with 28% of the grid cells containing cattail. Our techniques will be very useful in evaluating Everglade’s restoration and are applicable to wetlands around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adorisio, C., C. Bedregal, S. Daroubl, J. DeLeon, M. Edwards, C. Garvey, J. Madden, P. McGinnes, C. Miessau, D. Pescatore, P. Sievers, S. Van Horn, T. van Veen, J. Vega, S. K. Xue, and H. Zhao. 2006. Chapter 3: phosphorus controls for the basins tributary to the Everglades protection area. p. 31–389. In 2006 South Florida Environmental Report. South Florida Water Management District, West Palm Beach, FL, USA.

    Google Scholar 

  • Alexander, T. R. and A. G. Crook. 1975. Recent and long term vegetation changes and patterns in south Florida. south Florida ecological study, University of Miami, Coral Gables, FL, USA. Part II. PB-264-462.

    Google Scholar 

  • Burns, C. S. and R. E. McDonnell. 2003. Everglades protection area tributary basins long-term plan for achieving water quality goals. Report prepared for South Florida Water Management District, West Palm Beach, FL, USA.

    Google Scholar 

  • Cooper, R. M. and J. Roy. 1991. An atlas of surface water management basins in the Everglades: The Water Conservation Areas and Everglades National Park. South Florida Water Management District, West Palm Beach, FL, USA. Memorandum DRE-300.

    Google Scholar 

  • Davis, J. H., Jr. 1943. The natural features of southern Florida. Florida Geological Survey Bulletin 25, Tallahassee, FL, USA.

  • Davis, S. M. 1991. Growth, decomposition, and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades. Aquatic Botany 40: 203–24.

    Article  Google Scholar 

  • Davis, S. M. 1994. Phosphorus inputs and vegetation sensitivity in the Everglades. p. 357–78. In S. M. Davis and J. C. Ogden (eds.) Everglades, The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, FL, USA.

    Google Scholar 

  • Davis, S. M., L. H. Gunderson, W. A. Park, J. R. Richardson, and J. E. Mattson. 1994. Landscape dimension, composition, and function in a changing Everglades ecosystem. p. 419–44. In S. M. Davis and J. C. Ogden (eds.) Everglades, The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, FL, USA.

    Google Scholar 

  • Dineen, J. W. 1972. Life in the tenacious Everglades. South Florida Water Management District, West Palm Beach, FL, USA. In Depth Report (5).

    Google Scholar 

  • Dineen, J. W. 1974. Examination of water management alternatives in Conservation Area 2A. South Florida Water Management District, West Palm Beach, FL, USA. In Depth Report 2 (3).

    Google Scholar 

  • Doren, R. F., T. V. Armentano, L. D. Whiteaker, and R. D. Jones. 1997. Marsh vegetation patterns and soil phosphorus gradients in the Everglades ecosystem. Aquatic Botany 56: 145–63.

    Article  CAS  Google Scholar 

  • Douglas, M. S. 1947. The Everglades River of Grass. Rinehart, New York, NY, USA.

    Google Scholar 

  • Falkner, E. 1995. Aerial Mapping: Methods and Applications. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Gawlik, D. E., P. Gronmeyer, and R. A. Powell. 2002. Habitatuse patterns of avian seed dispersers in the central Everglades. p. 445–68. In F. H. Sklar and A. van der Valk (eds.) Tree Islands of the Everglades. Kluwer Academic Publishers, Boston, MA, USA.

    Google Scholar 

  • Harper, R. M. 1927. Natural resources of southern Florida. p. 25–206. In Eighteenth Annual Report of Florida Geological Survey. Tallahassee, FL, USA.

  • Harshberger, J. W. 1914. The vegetation of south Florida. Trans Wagner Free Institute of Science Philosophy 3: 51–189.

    Google Scholar 

  • Hinsken, L. 2002a. Orima orientation management software users guide. Leica-Geosystems, Heerbrugg, Switzerland.

    Google Scholar 

  • Hinsken, L. 2002b. Combined adjustment program (CAP-A): aerial version users guide. Leica-Geosystems, Heerbrugg, Switzerland.

    Google Scholar 

  • Jensen, J., K. Rutchey, M. Koch, and S. Narumalani. 1995. Inland wetland change detection in the Everglades Water Conservation Area 2A using a time series of normalized remotely sensed data. Journal of Photogrammetric Engineering and Remote Sensing 61: 199–209.

    Google Scholar 

  • Jensen, J. R. 2005. Introductory Digital Image Processing: A Remote Sensing Perspective. Pearson Prentice Hall, Upper Saddle River, NJ, USA.

    Google Scholar 

  • Light, S. S. and J. W. Dineen. 1994. Water control in the Everglades: a historical perspective. p. 47–84. In S. M. Davis and J. C. Ogden (eds.) Everglades, The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, FL, USA.

    Google Scholar 

  • Lillesand, T. M. and R. W. Kiefer. 1987. Remote Sensing and Image Processing. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Loveless, C. M. 1959. A study of vegetation in the Florida Everglades. Ecology 40: 1–9.

    Article  Google Scholar 

  • Ma, Z. and L. Redmond. 1995. Tau coefficients of accuracy assessment of classification of remote sensing data. Journal of Photogrammetric Engineering and Remote Sensing 61: 435–39.

    Google Scholar 

  • Miao, S. L. and W. F. DeBusk. 1999. Effects of phosphorus enrichment on structure and function of sawgrass and cattail communities in Florida Everglades. p. 275–99. In K. R. Reddy, G. A. O’Conner, and C. L. Shelske (eds.) Phosphorus Biogeochemistry in Subtropical Ecosystems. CRC Press/Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Newman, S., J. B. Grace, and J. W. Koebel. 1996. Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for Everglades restoration. Ecological Applications 6: 774–83.

    Article  Google Scholar 

  • RECOVER. 2004a. RECOVER program management plan. Restoration Coordination and Verification (RECOVER), South Florida Water Management District, West Palm Beach, FL, USA and United States Army Corps of Engineers, Jacksonville, FL, USA.

    Google Scholar 

  • RECOVER. 2004b. CERP monitoring and assessment plan: Part 1 monitoring and supporting research. Restoration Coordination and Verification (RECOVER), United States Army Corps of Engineers, Jacksonville, FL, USA and South Florida Water Management District, West Palm Beach, FL, USA.

    Google Scholar 

  • Rutchey, K., T. N. Schall, R. F. Doren, A. Atkinson, M. S. Ross, D. T. Jones, M. Madden, L. Vilchek, K. A. Bradley, J. R. Snyder, J. N. Burch, T. Pernas, B. Witcher, M. Pyne, R. White, T. J. SmithIII, J. Sadie, C. S. Smith, M. E. Patterson, and G. D. Gann. 2006. Vegetation classification for south Florida natural areas. United States Geological Survey, Saint Petersburg, FL, USA. Open-File Report 2006-1240.

    Google Scholar 

  • Rutchey, K. and L. Vilchek. 1994. Development of an Everglades vegetation map using a SPOT image and the global positioning system. Photogrammetric Engineering and Remote Sensing 60: 767–75.

    Google Scholar 

  • Rutchey, K. and L. Vilchek. 1999. Air photo-interpretation and satellite imagery analysis techniques for mapping cattail coverage in a northern Everglades impoundment. Photogrammetric Engineering and Remote Sensing 65: 185–91.

    Google Scholar 

  • Simberloff, D., D. C. Schmitz, and T. C. Brown. 1997. Strangers in Paradise. Island Press, Washington, DC, USA.

    Google Scholar 

  • Sklar, F. H., C. McVoy, R. ZanZee, D. E. Gawlik, K. Tarboton, D. Rudnick, S. Miao, and T. Armentano. 2002. The effects of altered hydrology on the Everglades. p. 39–82. In J. W. Porter and K. G. Porter (eds.) The Everglades, Florida Bay and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Sklar, F. H. and A. van der Valk. 2002. Tree Islands of the Everglades. Kluwer Academic Publishers, Boston, MA, USA.

    Google Scholar 

  • Snedecor, G. W. and W. G. Cochran. 1978. Statistical Methods, sixth edition. Iowa State University, Ames, IA, USA.

    Google Scholar 

  • USACE. 1996. Master water control manual for Water Conservation Areas, Everglades National Park and ENP-south Dade conveyance system, Volume 4. U.S. Army Corps of Engineers, Jacksonville, FL, USA.

    Google Scholar 

  • U.S. Congress. 2000. Section 601 of the Water Resources Development Act of 2000. Washington DC, USA. Public Law 106-541.

  • Volin, J. C., M. S. Lott, J. D. Muss, and D. Owen. 2004. Predicting rapid invasion of the Florida Everglades by Old World Climbing Fern (Lygodium microphyllum). Diversity and Distributions 10: 439–46.

    Article  Google Scholar 

  • Willoughby, H. L. 1898. Across the Everglades, A Canoe Journey of Exploration. J. M. Dent and Company, London, England.

    Google Scholar 

  • Worth, D. F. 1988. Environmental response of WCA-2A to reduction in regulation schedule and marsh drawdown. South Florida Water Management District, West Palm Beach, FL, USA. Technical Publication DRE-250.

    Google Scholar 

  • Wu, Y., K. Rutchey, W. Guan, L. Vilchek, and F. H. Sklar. 2002. Spatial simulations of tree islands for Everglades restoration, p. 469–98. In F. H. Sklar and A. van der Valk (eds.) Tree Islands of the Everglades. Kluwer Academic Publishers, Boston, MA, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutchey, K., Schall, T. & Sklar, F. Development of vegetation maps for assessing Everglades restoration progress. Wetlands 28, 806–816 (2008). https://doi.org/10.1672/07-212.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/07-212.1

Key Words

Navigation