Skip to main content

Advertisement

Log in

Lipid biomarkers for assessment of microbial communities in floodplain soils of the Elbe River (Germany)

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Two long-term submerged Eutric Gleysols (GLe) and two short-term flooded Eutric Fluvisols (FLe) with high organic carbon contents (Corg between 5.1 and 12.9%) were selected to characterize soil microbial communities at the Elbe River (Germany). Measurements included dehydrogenase activity (DHA), soil microbial carbon (Cmic), soil basal respiration (BR), metabolic quotient (qCO2), Cmic/Corg ratio, and phospholipid fatty acids (PLFA). PLFA biomass, DHA, and Cmic/Corg ratios were considerable lower in GLe’s than in FLe’s. Whereas the BR as well as qCO2 were higher in GLe’s what seems to be an unspecific response of aerobic soil microorganisms to the long flooding period and the resulting short time for development following flooding. Cmic/Corg ratios were low in comparison to terrestrial soils. PLFA profiles were dominated by saturated fatty acids (FA). Principal component analyses (PCA) of FAs revealed clear differences among the four floodplain soils. In GLe’s all fractions of PLFAs were lower than in FLe’s. Polyunsaturated FA biomarkers (18:2ω6,9c) were 10 times lower in GLe’s. Our results indicate that the environmental conditions in which microorganisms are exposed (i.e., long term soil inundation and anoxia) seem to be disadvantageous for fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Altermann, M., J. Rinklebe, I. Merbach, M. Körschens, U. Langer, and B. Hofmann. 2005. Chernozem — Soil of the year 2005. Journal of Plant Nutrition and Soil Science 168: 725–40.

    Article  CAS  Google Scholar 

  • Anderson, J. P. E. and K. H. Domsch. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry 10: 215–21.

    Article  CAS  Google Scholar 

  • Anderson, T. H. and K. H. Domsch. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry 21: 471–79.

    Article  Google Scholar 

  • Anderson, T. H. and K. H. Domsch. 1990. Application of ecophysiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry 25: 393–95.

    Article  Google Scholar 

  • Anderson, T. H. and K. H. Domsch. 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry 25: 393–95.

    Article  Google Scholar 

  • Anderson, T. H. and R. G. Joergensen. 1997. Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biology and Biochemistry 29: 1033–42.

    Article  CAS  Google Scholar 

  • Bååth, E. 2003. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microbial Ecology 45: 373–83.

    Article  PubMed  CAS  Google Scholar 

  • Bååth, E., A. Frostegård, and H. Fritze. 1992. Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline crust deposition. Applied and Environmental Microbiology 58: 4026–31.

    PubMed  Google Scholar 

  • Bailey, V. L., A. D. Peacock, J. L. Smith, and H. Bolton, Jr. 2002. Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biology and Biochemistry 34: 1385–89.

    Article  CAS  Google Scholar 

  • Baum, C. and K. Hrynkiewicz. 2006. Clonal and seasonal shifts in communities of saprotrophic microfungi and soil enzyme activities in the mycorrhizosphere of Salix spp. Journal of Plant Nutrition and Soil Science 169: 481–87.

    Article  CAS  Google Scholar 

  • Bligh, E. and W. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–17.

    CAS  PubMed  Google Scholar 

  • Bossio, D. A. and K. M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipids fatty acid profiles and substrate utilization patterns. Microbial Ecology 35: 265–78.

    Article  CAS  PubMed  Google Scholar 

  • Bossio, D. A., K. M. Scow, N. Gunapala, and K. J. Graham. 1998. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology 36: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Cronewitz, E., K. Dörter, I. Lieberoth, and M. Pretzschel. 1974. Standortkundliche Beurteilung der wichtigsten Auenböden der DDR als Grundlage fÜr acker- und pflanzenbauliche sowie meliorative Maßnahmen. Archive of Agronomy and Soil Science 18: 121–33.

    Google Scholar 

  • Drenovsky, R. E., G. N. Elliott, K. J. Graham, and K. N. Scow. 2004. Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biology and Biochemistry 36: 1793–1800.

    Article  CAS  Google Scholar 

  • Emmerling, C. 1993. Nährstoffhaushalt und mikrobiologische Eigenschaften von Auenböden sowie die Besiedlung durch Bodentiere unter differenzierter Nutzung und Überschwemmungsdynamik. Ph.D. Dissertation. University of Trier, Germany.

    Google Scholar 

  • FAO/ISRIC/ISSS. 1998. World Reference Base for Soil Resources. World Soil Resources Report 84. FAO, Rome, Italy.

    Google Scholar 

  • Feng, Y., A. Motta, D. Reeves, C. Burmester, E. van Santen, and J. Osborne. 2003. Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biology and Biochemistry 35: 1693–1703.

    Article  CAS  Google Scholar 

  • Friedel, J. K., K. Mölter, and W. R. Fischer. 1994. Comparison and improvement of methods for determining soil dehydrogenase activity by using triphenyltetrazolium chloride and iodonitrotetrazolium chloride. Biology and Fertility of Soils 18: 291–96.

    Article  CAS  Google Scholar 

  • Frostegård, Å., A. Tunlid, and E. Bååth. 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods 14: 151–63.

    Article  Google Scholar 

  • Frostegård, Å., A. Tunlid, and E. Bååth. 1993a. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology 59: 3605–17.

    PubMed  Google Scholar 

  • Frostegård, Å., E. Bååth, and A. Tunlid. 1993b. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology and Biochemistry 25: 723–30.

    Article  Google Scholar 

  • Green, C. T. and K. M. Scow. 2000. Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeology Journal 8: 126–41.

    Article  CAS  Google Scholar 

  • Griffiths, B. S., H. L. Kuan, K. Ritz, L. A. Glover, A. E. McCaig, and C. Fenwick. 2004. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microbial Ecology 47: 104–13.

    Article  CAS  PubMed  Google Scholar 

  • Groffman, P. M., P. Eagan, W. M. Sullivan, and J. L. Lemunyon. 1996. Grass species and soil type effects on microbial biomass and activity. Plant and Soil 183: 61–67.

    Article  CAS  Google Scholar 

  • Guckert, J. B., C. P. Antworth, P. D. Nichols, and D. C. White. 1985. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in procaryotic community structure of estuarine sediments. FEMS Microbial Ecology 31: 147–58.

    CAS  Google Scholar 

  • Heinemeyer, O., H. Insam, E. A. Kaiser, and G. Walenzik. 1989. Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant and Soil 1–6: 191–95.

    Article  Google Scholar 

  • Klamer, M. and E. Bååth. 2004. Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9. Soil Biology and Biochemistry 36: 57–65.

    Article  CAS  Google Scholar 

  • Klimanek, E. M. and C. Matejko. 1997. Die Wirkung von Schadstoffkontaminationen auf bodenbiologische Parameter von ausgewählten Flächen der Muldeaue. I. Mitteilung: Einfluss von Schadstoffbelastungen auf die mikrobielle Aktivität des Bodens. Archive of Agronomy and Soil Science 41: 305–12.

    Article  CAS  Google Scholar 

  • Kutilek, M. and D. R. Nielsen. 2007. Interdisciplinarity of hydropedology. Geoderma 138: 252–60.

    Article  CAS  Google Scholar 

  • Langer, U. and E. M. Klimanek. 2006. Soil microbial diversity of four German long-term field experiments. Archive of Agronomy and Soil Science 52: 507–23.

    Article  CAS  Google Scholar 

  • Lundquist, E. J., L. E. Jackson, and K. M. Scow. 1999b. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biology and Biochemistry 31: 1031–38.

    Article  CAS  Google Scholar 

  • Lundquist, E. J., K. M. Scow, L. E. Jackson, S. L. Uesugi, and C. R. Johnson. 1999a. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biology and Biochemistry 31: 1661–75.

    Article  CAS  Google Scholar 

  • Macalady, J. L., E. E. Mack, D. C. Nelson, and K. M. Scow. 2000. Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California. Applied and Environmental Microbiology 66: 1479–88.

    Article  CAS  PubMed  Google Scholar 

  • Mamilov, A. S. and O. Dilly. 2002. Soil microbial eco-physiology as affected by short-term variations in environmental conditions. Soil Biology and Biochemistry 34: 1283–90.

    Article  CAS  Google Scholar 

  • McSpadden Gardener, B. and A. Lilley. 1997. Application of common statistical tools. p. 501–4. In J. van Elsas, J. Trevors, and E. Wellington (eds.) Modern Soil Microbiology. Marcel Dekker Inc., New York, USA.

    Google Scholar 

  • Megonigal, J. P., S. P. Faulkner, and W. H. Patrick. 1996. The microbial activity season in southeastern hydric soils. Soil Science Society of America Journal 60: 1263–66.

    CAS  Google Scholar 

  • Morgan, J. and C. Winstanley. 1997. Microbial biomarkers. p. 331–352. In J. van Elsas, J. Trevors, and E. Wellington (eds.) Modern Soil Microbiology. Marcel Dekker, Inc., New York, USA.

    Google Scholar 

  • Munsell, A. H. 1994. Soil color charts. Revised Edition. Macbeth Division of Kollmorgan Instruments Corporation.

  • Overesch, M., J. Rinklebe, G. Broil, and H. U. Neue. 2007. Metals and arsenic in soils and corresponding vegetation at central Elbe river floodplains (Germany). Environmental Pollution 145: 800–12.

    Article  CAS  PubMed  Google Scholar 

  • Pennanen, T. 2001. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH — a summary of the use of phospholipid fatty acids, Biolog® and 3H-thymidine incorporation methods in field studies. Geoderma 100: 91–126.

    Article  CAS  Google Scholar 

  • Pennanen, T., Å. Frostegård, H. Fritze, and E. Bååth. 1996. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Applied and Environmental Microbiology 62: 420–28.

    CAS  PubMed  Google Scholar 

  • Praveen-Kumar, N. N. and J. C. Tarafdar. 2003. 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biology and Fertility of Soils 38: 186–89.

    Article  CAS  Google Scholar 

  • Rajendran, N., O. Matsuda, N. Imamura, and Y. Urushigawa. 1992. Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids. Applied and Environmental Microbiology 58: 562–71.

    CAS  PubMed  Google Scholar 

  • Ravit, B., Ehrenfeld, J. G., Häggblom, M. M., and M. Bartels. 2007. The effects of drainage and nitrogen enrichment on Phragmites australis, Spartina alterniflora, and their rootassociated microbial communities. Wetlands 27: 915–27.

    Article  Google Scholar 

  • Rinklebe, J. 2004. Differenzierung von Auenböden der Mittleren Elbe und Quantifizierung des Einflusses von deren Bodenkennwerten auf die mikrobielle Biomasse und die Bodenenzymaktivitäten von β-Glucosidase, Protease und alkalischer Phosphatase. Ph.D. Dissertation. Martin-Luther-Universität Halle-Wittenberg, Halle, Germany.

    Google Scholar 

  • Rinklebe, J., C. Franke, and H. U. Neue. 2007. Aggregation of floodplain soils as an instrument for predicting concentrations of nutrients and pollutants. Geoderma 141: 210–223.

    Article  CAS  Google Scholar 

  • Rinklebe, J., K. Heinrich, and H. U. Neue. 2000a. Auenböden im Biosphärenreservat Mittlere Elbe — ihre Klassifikation und Eigenschaften. p. 37–46. In K. Friese, B. Witter, G. Miehlich, and M. Rode (eds.) Stoffhaushalt von Auenökosystemen. Böden und Hydrologie, Schadstoffe, Bewertungen. Springer Verlag.

    Google Scholar 

  • Rinklebe, J., C. Heibach, F. Franke, and H. U. Neue. 2000b. Großmaßstäbige Bodenformenkarte der “Schöneberger Wiesen” bei Steckby im Biosphärenreservat Mittlere Elbe. (Large scale soil mapping of wetland soils at the Elbe river.) In German with English Summary. Angewandte Landschaftsökologie 37: 325–28.

    Google Scholar 

  • Rinklebe, J. and U. Langer. 2006. Microbial diversity in three floodplain soils at the Elbe river (Germany). Soil Biology and Biochemistry 38: 2144–51.

    Article  CAS  Google Scholar 

  • Rinklebe, J. and U. Langer. 2008. Floodplain soils at the Elbe river, Germany, and their diverse microbial biomass. Archive of Agronomy and Soil Science 54: 259–73.

    Article  CAS  Google Scholar 

  • Schinner, F., R. Öhlinger, E. Kandeler, and R. Margesin. 1993. Bodenbiologische Arbeitsmethoden. 2. Auflage. Springer-Verlag Berlin Heidelberg, Germany.

    Google Scholar 

  • Schjønning, P., I. K. Thomsen, P. Moldrup, and B. T. Christensen. 2003. Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Science Society of America Journal 67: 156–65.

    Article  Google Scholar 

  • Schlichting, E., H. P. Blume, and K. Stahr. 1995. Bodenkundliches Praktikum. Second Edition. Blackwell Wissenschaftsverlag, Berlin, Wien.

    Google Scholar 

  • Schubert, R., W. Hilbig, and S. Klotz. 1995. Bestimmungsbuch der Pflanzengesellschaften Mittel- und Nordostdeutschlands. G. Fischer, Jena-Stuttgart, Germany.

    Google Scholar 

  • Smith, J. L. 1993. Cycling of nitrogen through microbial activity. p. 91–120. In J. Hatfield (ed.) Advances in Soil Science. Vol 18. Springer-Verlag, New York, USA.

    Google Scholar 

  • Söderberg, K. H., A. Probanza, A. Jumpponen, and E. Bååth. 2004. The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil- and cfu-PLFA techniques. Applied Soil Ecology 25: 135–45.

    Article  Google Scholar 

  • Sparling, G. P. 1997. Soil microbial biomass, activity and nutrient cycling as indicators of soil health. p. 97–119. In C. E. Pankhurst, B. M. Doube, and V. V. S. R. Gupta (eds.) Biological Indicators of Soil Health. CAB International Publishing, Wallingford, Oxon, UK.

    Google Scholar 

  • Tabatabai, M. A. 1982. Soil enzymes. p. 903–48. In A. L. Page and D. R. Keeney (eds.) Methods of soil analysis. Part 2: chemical and microbiological properties. Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  • Thalmann, A. 1968. Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtschaftliche Forschung 21: 249–58.

    CAS  Google Scholar 

  • Tischer, S. 2005. Microbial biomass and enzyme activities on soil monitoring sites in Saxony-Anhalt, Germany. Archive of Agronomy and Soil Science 51: 673–85.

    Article  CAS  Google Scholar 

  • Vaisvalavicius, R., A. Motuzas, I. Prosycevas, L. Levinskaite, D. Zakarauskaite, K. Grigaliuniene, and V. Butkus. 2006. Effect of heavy metals on microbial communities and enzymatic activity in soil column experiment. Archive of Agronomy and Soil Science.

  • Vestal, J. R. and D. C. White. 1989. Lipid analysis in microbial ecology. Bioscience 39: 535–41.

    Article  CAS  PubMed  Google Scholar 

  • Wälder, K., O. Wälder, J. Rinklebe, and J. Menz. 2008. Estimation of soil properties with geostatistical methods in floodplains. Archive of Agronomy and Soil Science 54: 275–95.

    Article  Google Scholar 

  • Wardle, D. A. 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Review 67: 321–58.

    Article  Google Scholar 

  • Wardle, D. A. 1998. Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Review. Soil Biology and Biochemistry 30: 1627–37.

    Article  CAS  Google Scholar 

  • Wardle, D. A. and A. Ghani. 1995. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry 27: 1601–10.

    Article  CAS  Google Scholar 

  • White, D. C., W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40: 51–62.

    Article  Google Scholar 

  • Williams, M. A. and C. W. Rice. 2007. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Applied Soil Ecology 35: 535–45.

    Article  Google Scholar 

  • Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35: 275–94.

    Article  CAS  PubMed  Google Scholar 

  • Zelles, L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils 29: 111–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, U., Rinklebe, J. Lipid biomarkers for assessment of microbial communities in floodplain soils of the Elbe River (Germany). Wetlands 29, 353–362 (2009). https://doi.org/10.1672/08-114.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-114.1

Key Words

Navigation