Skip to main content
Log in

Early floating marsh establishment and growth dynamics in a nutrient amended wetland in the lower Mississippi delta

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Nutrient dynamics and seasonal vegetation growth were examined in a newly formed floating marsh dominated byPanicum virgatum in the Mississippi River delta. The floating marsh formed in a shallow aquatic environment receiving secondarily treated municipal effluent. Net Areal Primary Productivity (NAPP), total belowground biomass, NO3, and plant-tissue δ15N ratios varied significantly (P < 0.05) along a 75-m marsh transect, while mean plant-tissue δ13C values differed between the dominant species. The area nearest the effluent discharge had the highest NAPP (3876 g m−2 y−1), total belowground biomass (4079.0 ± 298.5 g m−2), and mean NO3 (5.4 ± 2.9 mg 1−1). The mean δ15N ofHydrocotyle umbellata floating marsh was less enriched at 0–75 m (9.7 ± 1.9‰) compared to 100–200 m (21.0 ± 3.8‰). The δ13C of the belowground peat mat of the floating marsh was similar toP. virgatum but notH. umbellata, indicating thatP. virgatum was forming the mat. Nutrient availability affected NAPP and δ15N. NAPP was greater than most reported values for floating marsh from 0–45 m then decreased along with NO3 concentrations and δ15N further from the effluent source. These results suggest that nutrient rich freshwater can promote restoration of some floating marshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agami, M. and K. R. Reddy. 1991. Interrelationships betweenEichhornia crassipes (Mart.) Solms andHydrocotyle umbellate L. Aquatic Botany 39: 7–157.

    Article  Google Scholar 

  • Altabet, M. A. 2001. Nitrogen isotopic evidence for micronutrient control of fractional NO 3 utilization in the equatorial pacific. Limnology and Oceanography 46: 368–80.

    CAS  Google Scholar 

  • Boesch, D. F., M. N. Josselyn, A. J. Mehta, J. T. Morris, W. K. Nuttle, C. A. Simenstad, and D. J. P. Swift. 1994. Scientific assessment of coastal wetland loss, restoration and management. Journal of Coastal Research Special Issue No. 20.

  • Boustany, R. G., C. R. Crozier, J. M. Rybczyk, and R. R. Twilley. 1997. Denitrification in a south Louisiana wetland forest receiving treated sewage effluent. Wetlands Ecology and Management 4: 272–83.

    Google Scholar 

  • Breaux, A. M. and J. W. Day Jr. 1994. Policy considerations for wetland wastewater treatment in the coastal zone: a case study for Louisiana. Coastal Management 22: 285–307.

    Article  Google Scholar 

  • Cole, M. L., I. Valiela, K. D. Kroeger, G. L. Tomasky, J. Cebrian, C. Wigand, R. A. McKinney, S. P. Grady, and M. H. C. da Silva. 2004. Assessment of a 15N Isotopic Method to Indicate Anthropogenic Eutrophication in Aquatic Ecosystems Journal of Environmental Quality 33: 124–32.

    CAS  Google Scholar 

  • Cypert, E. 1972. The origin of houses in the Okefenoke Prairies. The American Midland Naturalist 87: 448–58.

    Article  Google Scholar 

  • Day, J. W. Jr and G. P. Kemp. 1985. Long-term impacts of agricultural runoff in a Louisiana swamp forest. p. 317–326.In P. J. Godfrey, et al. 1985. Ecological Considerations in Wetland Treatment of Municipal Wastewater. Van Nostrand Reinhold, New York, NY, USA.

    Google Scholar 

  • Day, J. W. Jr, D. F. Boesch, E. J. Clairain, G. P. Kemp, S. B. Laska, W. J. Mitsch, K. Orth, H. Mashriqui, D. J. Reed, L. Shabman, C. A. Simenstad, B. J. Streever, R. R. Twilley, C. C. Watson, J. T. Wells, and D. F. Whigham. 2007. Restoration of the Mississippi Delta: lessons from Hurricanes Katrina and Rita. Science 315: 1679–84.

    Article  CAS  PubMed  Google Scholar 

  • Day, J. W. Jr, Jae-Young Ko, J. Rybczyk, D. Sabins, R. Bean, G. Berthelot, C. Brantley, L. Cardoch, W. Conner, J. N. Day, A. J. Englande, S. Feagley, E. Hyfield, R. Lane, J. Lindsey, J. Mistich, E. Reyes, and R. R. Twilley. 2004. The use of wetlands in the Mississippi Delta for wastewater assimilation: a review. Ocean and Coastal Management 47: 671–91.

    Article  Google Scholar 

  • Day, J. W. Jr, G. Shaffer, L. Britsch, D. Reed, S. Hawes, and D. Cahoon. 2000. Pattern and process of land loss in the Mississippi delta: a spatial and temporal analysis of wetland habitat change. Estuaries 23: 425–38.

    Article  Google Scholar 

  • DeLaune, R. D., C. J. Smith, and M. N. Sarafyan. 1986. Nitrogen cycling in a freshwater marsh ofPanicum hemitomon on the deltaic plain of the Mississippi River. Journal of Ecology 74: 249–56.

    Article  Google Scholar 

  • DeLaune, R. D. and W. H. Patrick. 1990. Nitrogen cycling in Louisiana Gulf Coast brackish marshes. Hydrobiologia 199: 73–79.

    Article  CAS  Google Scholar 

  • EPA. 1998. Evaluation of Bayou Lafourche Wetlands Restoration Project: Summary Report. Coastal Wetlands Planning, Protection and Restoration Act Project PBA-20.

  • Fry, B. 2006. Stable Isotope Ecology. Springer, NY.

    Book  Google Scholar 

  • George, J. R., K. M. Blanchet, R. M. Gettle, D. R. Buxton, and K. J. Moore. 1995. Yield and botanical compositioin of legume-interseeded vs. nitrogen-fertilized switchgrass. Agronomy Journal 87: 1147–53.

    Article  Google Scholar 

  • Hernandez, M. E. and W. J. Mitsch. 2006. Denitrification Potential and Organic Matter as Affected by Vegetation Community, Wetland Age, and Plant Introduction in Created Wetlands. Journal of Environmental Quality 36: 333–42.

    Article  CAS  Google Scholar 

  • Holm, G. O. and C. E. Sasser. 2001. Differential salinity response between two Mississippi River subdeltas: implications for changes in plant composition. Estuaries 24: 78–89.

    Article  Google Scholar 

  • Holm, G. O., C. E. Sasser, G. W. Peterson, and E. M. Swenson. 2000. Vertical Movement and Substrate Characteristics of Oligohaline Marshes Near a High-Sediment Riverine System. Journal of Coastal Research 16: 164–71.

    Google Scholar 

  • Hopkinson, C. S. and J. W. Day Jr. 1979. Aquatic Productivity and Water Quality at the Upland—Estuary Interface in Barataria, Louisiana. p. 291–314.In R. Livingston (ed.) Ecological Processes in Coastal and Marine Systems. Plenum Press, New York.

    Google Scholar 

  • Izdepski, C. W. 2008. Early Floating Marsh Establishment and Growth Dynamics in a Nutrient Amended Wetland in the Lower Mississippi Delta. Master’s Thesis. Louisiana State University, Baton Rouge, Louisiana, USA.

    Google Scholar 

  • Kaldec, R. H. and H. Alvord. 1989. Mechanisms of Water Quality Improvement in Wetland Treatment Systems. p. 489–98, Wetlands: Concerns and Successes. Proceedings of a Symposium held September 17–22 1989, Tampa, Florida. American Water Resources Association, Bethesda, Maryland.

    Google Scholar 

  • Kemp, G. P. and J. W. Day Jr. 1984. Nutrient Dynamics in a Louisiana Swamp Recieving Agricultural Runoff. p. 286–93.In K. C. Ewel and H. T. Odum (eds.) Cypress Swamps. University of Florida Press, Gainesville, FL.

    Google Scholar 

  • Kemp, G. P., W. H. Conner, and J. W. Day Jr. 1985. Effects of flooding on decomposition and nutrient cycling in a Louisiana swamp forest. Wetlands 5: 35–51.

    Article  Google Scholar 

  • McLauglin, S. B. and L. A. Kszos. 2005. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy 28: 515–35.

    Article  Google Scholar 

  • Mendelssohn, I. A. and J. T. Morris. 2000. Eco-physiological constraints on the primary productivity ofSpartina alterniflora. p. 59–80.In M. P. Weinstein and D. A. Kreeger (eds.) Concepts and Controversies in Tidal Marsh Ecology. Kluwer, Boston, MA, USA.

    Google Scholar 

  • O’Neil, T. 1949. The muskrat in the Louisiana coastal marshes. Wildlife and Fisheries Commission, New Orleans, LA, USA.

    Google Scholar 

  • Penland, S. and K. E. Ramsey. 1990. Relative sea level rise in Louisiana and the Gulf of Mexico: 1908–1988. Journal of Coastal Research 6: 323–42.

    Google Scholar 

  • Reddy, K. R. and W. F. DeBusk. 1984. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: I. water hyacinth, water lettuce, and pennywort. Economic Botany 38: 229–329.

    Google Scholar 

  • Richardson, C. J. and J. A. Davis. 1987. Natural and artificial wetland ecosystems: Ecological opportunities and limitations. p. 819–854.In K. R. Reddy and W. H. Smith (eds.) Aquatic Plants for Water Treatment and Resource Recovery. Magnolia Publishing Inc, Orlando, FL.

    Google Scholar 

  • Russell, R. J. 1942. Flotant. Geographical Review 32: 74–98.

    Article  Google Scholar 

  • Rybczyk, J. M., J. W. Day Jr, and W. H. Conner. 2002. The impact of wastwater effluent on accretion and decomposition in a subsiding forested wetland. Wetlands 22: 18–32.

    Article  Google Scholar 

  • Rybczyk, J. M., G. Garson, and J. W. Day Jr. 1996. Nutrient enrichment and decomposition in wetland ecosystems: models, analyses and effects. Current Topics in Wetland Biogeochemistry 2: 52–72.

    Google Scholar 

  • Sasser, C. E. 1994. Vegetation dynamics in relation to nutrients in floating marshes in Louisiana, USA. Ph.D. Dissertation, University of Utrecht, The Netherlands. 193 pp.

    Google Scholar 

  • Sasser, C. E., J. G. Gosselink, E. M. Swenson, and D. E. Evers. 1995. Hydrologic, vegetation, and substrate characteristics of floating marshes in sediment-rich wetlands of the Mississippi River delta plain, Louisiana, USA. Wetlands Ecology and Management 3: 171–87.

    Article  Google Scholar 

  • Sasser, C. E., J. G. Gosselink, E. M. Swenson, C. M. Swarzenski, and N. C. Leibowitz. 1996. Vegetation, substrate and hydrology in floating marshes in the Mississippi River delta plain wetlands, USA. Vegetatio 122: 129–42.

    Article  Google Scholar 

  • Sasser, C. E., J. G. Gosselink, G. O. Holm Jr, and J. M. Visser. In press. Freshwater Tidal Wetlands of the Mississippi River Delta. 2009. p. 167–178.In A. Barendregt, A. Baldwin, P. Meire, and D. Whigham (eds.) Tidal Freshwater Wetlands. Backhuys Publishers.

  • Shaffer, G. P., C. E. Sasser, J. G. Gosselink, and M. Rejmanek. 1992. Vegetation Dynamics in the Emerging Atchafalaya Delta, Louisiana, USA. The Journal of Ecology 80: 677–87.

    Article  Google Scholar 

  • Shew, D. M., R. A. Linthurst, and E. D. Seneco. 1981. Comparison of production computation methods in a southeastern North Carolina Spartina alterniflora salt marsh. Estuaries 4: 97–109.

    Article  Google Scholar 

  • Smalley, A. E. 1958. The role of two invertebrate populations,Littorina irrorata andOrchelium fidicenium in the energy flow of a salt marsh ecosystem. Ph.D. thesis. University of Georgia, Athens, GA, USA.

    Google Scholar 

  • Taylor, K. L. and J. B. Grace. 1995. The effects of vertebrate herbivory on plant community structure in the coastal marshes of the Pearl River, Louisiana, USA. Wetlands 15: 68–73.

    Google Scholar 

  • Vogel, K. P., J. J. Brejda, D. T. Walters, and D. R. Buxton. 2002. Switchgrass biomass production in the Midwest USA: harvest and nitrogen management. Agronomy Journal 94: 413–20.

    Article  Google Scholar 

  • Zhang, X., S. Feagley, J. W. Day, W. Conner, I. Hesse, J. Rybczyk, and W. Hudnall. 2000. A water chemistry assessment of wastewater remediation in a natural swamp in Louisiana. Journal of Environmental Quality 29: 1960–68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izdepski, C.W., Day, J.W., Sasser, C.E. et al. Early floating marsh establishment and growth dynamics in a nutrient amended wetland in the lower Mississippi delta. Wetlands 29, 1004–1013 (2009). https://doi.org/10.1672/08-218.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-218.1

Key Words

Navigation