
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63205 878

Data Deduplication and Load Balancing

Techniques on Cloud Systems

Prof M.S. Pokale
1
, Surabhi Dhok

2
, Vaishnavi Kasbe

3
, Gauri Joshi

4
, Noopur Shinde

5

Professor, Computer, PVG‟S COET, Pune, India1

Student, Computer, PVG‟S COET, Pune, India2,3,4,5

Abstract: Cloud storage systems are able to provide low-cost and convenient network storage service for users, which

makes them more and more popular. However, the storage pressure on cloud storage system caused by the explosive
growth of data is growing by the day, especially a vast amount of data waste plenty of storage space. Data

deduplication can effectively reduce the size of data by eliminating redundant data in storage systems. However,

current researches on data deduplication, which mainly focus on the static scenes such as the backup and archive

systems, are not suitable for cloud storage system due to the dynamic nature of data. In this paper, we propose the

architecture of deduplication system for cloud storage environment and give the process of avoiding duplication at the

file-level and chunk-level on the client side. In the storage nodes (Snodes), DelayDedupe, a delayed target

deduplication scheme based on the chunk-level deduplication and the access frequency of chunks, are proposed to

reduce the response time. Combined with replica management, this method determines whether new duplicated chunks

for data modification are hot and removes the hot duplicated chucks when they aren‟t hot. The experiment results

demonstrate that the DelayDedupe mechanism can effectively reduce the response time and achieve the storage load of

Snodes more balanced.

Keywords: Cloud storage, deduplication, DelayDedupe, replica, chunk, load balancing.

I. INTRODUCTION

Data deduplication is a specialized technique for data

compression or splitting of data into chunks for

eliminating duplicate copies of repeating data. Few

synonymous terms are intelligent (data) compression and

single-instance (data) storage. This technique is used to

improve storage utilization and can also be applied to

network data transfers to reduce the number of bytes that
must be sent.

Load Balancing is a method of distributing workload

across multiple computing resources such as cluster of

computers . The goal of Load Balancing is to optimize the

resource usage, avoid overload, maximize throughput and

to minimize the response time. This was identified as a

major concern in Cloud Computing to scale up the

increasing demands[1].

Cloud computing enables on-demand network access to a

shared pool of configurable computing resources such as
servers, storage and applications. Cloud storage refers to

the delivery of storage resources to the consumers over the

Internet. During such expansion, storage nodes in the

cloud storage need to be balanced in terms of load. In

order to maintain the load across several storage nodes, the

data needs to be migrated across the storage nodes.[3] This

data migration consumes more network bandwidth. The

key idea behind this Application is to develop a dynamic

load balancing algorithm based on deduplication to

balance the load across the storage nodes.

II. RELATED WORK

There are different types of deduplication techniques.

Local deduplication[5] occurs at a single data source,

whereas global deduplication is used to integrate different

data sources . Therefore, the latter is better than the

former, but the overhead of the latter is much larger than

the former. Client-side deduplication[5] happens at the

client side before data is uploaded, hence reducing the
network bandwidth, but takes up a large number of

computing resources at the source end. Compared with

client-side deduplication, server-side deduplication [1]i.e

target deduplication happens at the target end where data

is stored hence eliminating redundancy between different

data sources to ensure that only one copy is stored.

Inline deduplication can realize real-time data reduction

when data is written to the storage system, such as

DataDomain, but consumes much system resources.

Offline deduplication requires enough free space for data

storage before deduplication . This approach is suitable for

the storage protocols like Direct-Attached Storage and
Storage Area Network. File-level deduplication, chunk-

level deduplication and byte-level deduplication can

increase storage utilization by eliminating data redundancy

within or across files. Whole-file chunking cannot

eliminate data redundancy within files, so finer-grained

chunking strategies like fixed size chunking, content-

defined chunking, and TTTD chunking[3] are introduced.

In fixed-size chunking algorithm, all files are portioned

into blocks with a fixed size such as 4KB and 8KB. It is

suitable for EXE, PDF, VMDK files due to its low

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63205 879

computational overhead. But, it is very sensitive to the

data change.

Content-defined chunking is a typical variable size

chunking algorithm combining Rabin‟s key and sliding

window to determine the chunking boundaries by the

content of data, and the similarity of files can thus be

detected. found when the window size is bytes and the

expected chunk size is 8KB, content-defined chunking can

provide better performance of deduplication. [3]However,
it results in high system overhead and in extreme cases ,

the size of data chunk is too big or too small. Therefore,

the improved content-defined chunking algorithm is used

to effectively control the distribution of block size by

setting the minimum and maximum chunk size .

After all files are divided into small blocks, the keys of all

blocks are needed to be calculated as their identifiers by

using MD5 or SHA-1 and the identifiers are used for key

lookup. That is, two keys are same if and only if

corresponding data in files is the same. Moreover,

although cryptographic hash functions take a message of

arbitrary length as input, they produce a specific bit length
key as output, 128-bit for MD5 and 160-bit for SHA-1,

respectively. The overall performance of SHA-1 is better

than MD5, but the overhead of CPU is higher and the rate

of operation is relatively slower.

The disk bottleneck problem constrains the performance of

deduplication systems due to the querying of an index over

all the existing keys. In general, as the memory space is

very limited, only a fraction of index is stored in memory,

and the remaining majority of the index is stored on disk.

Extreme Binning exploits file similarity instead of locality

to put files with the same representative chunk ID (that is,
the minimum chunk ID of every file by Border‟s theorem)

into the same bin (each bin is stored on the disk). Each

representative chunk ID is kept in the primary index that

resides in RAM and contains a pointer to its bin. Although

Extreme Binning is a scalable, parallel deduplication

technique, it isn‟t suitable for the workload mainly

composed of small files. To this end, similar index uses

similar hash as the feature of a file. In addition to these

software methods above, demonstrates that performance

acceleration can be achieved by a pipelined dual-level

keying based on multi-core CPUs from a hardware
perspective.

Additionally, data attributes are taken to improve the

deduplication. Tan et al. proposed the SAM source

deduplication for cloud backup system, which decreases
the range of key comparison to increase the speed of

deduplication process by exploiting file semantics

in[4]cluding the locality, size, type, and timestamp of file.

Tan et al. proposed a deduplication performance booster

called CABdedupe, which captures and records the casual

relationships among chronological versions of datasets to

remove the unmodified data during the deduplication. Fu

et al. proposed the AA-Dedupe scheme for cloud backup

services, which chooses different chunking strategies and

hash functions for different applications to improve

deduplication efficiency. For the deduplication in cloud

storage system, recent findings mostly focus on the

security of cloud storage. Shen proposed a secure

deduplication with proxy encryption and version control.

Stanek et al. presented a novel threshold cryptosystem

based on data popularity which permits a more fine-

grained trade-off between storage efficiency and security.

That is, it guarantees semantic security for unpopular data

and provides weaker security and better storage for

popular data. The dynamic nature of data is mentioned in
The Redundancy Manager, calculates an optimal number

of copies for files based on the number of reference and

level of Quality of Service after identifying the

duplication. However, new duplication for data

modification by users isn‟t considered in storage nodes.

III. SYSTEMMODULE

This section gives the architecture of system with

deduplication and how to avoid the duplication of data.

A .System Architecture
System architecture is the conceptual model that defines

the structure behavior and more views of a system . An

architectural description is a formal description and

representation of a system organized in a way that

supports reasoning about the structures of the system. It

can comprise system components, the externally visible

properties of those components , the relationships between

them . It can provide a plan from which products can be

procured, and systems developed that will work together

to implement the overall system . There have been efforts

to formalize language to describe system architecture ;[3]
collectively these are called architecture description

languages.

The system consists of different modules like Client, MS,

Secondary MS (SMS) and Snode. Client is used to

represent the location of the original data to be uploaded

and Snode represents the location of the new data to be

stored after deduplication Users can perform the following

operations :- request for uploading the file, file access, file

modification, download and deletion through Client . The

metadata of files is stored in MS and the actual data is
stored in Snode. With the help of metadata information,

we can find the location of data in Snode and determine

whether the data from Client is duplicated. MS acts as the

manager of the system . If MS malfunctions, the system

breaks down. To avoid single-point failure, SMS is

responsible for synchronizing the backup of metadata

images and operation logs.

Every time new data is uploaded, system first performs

local deduplication and uploads the metadata information

to MS.[1] Then it finally uploads the new no-duplicated

data to Snode. There are four modules on the Client side:

File Preprocess Module, Local Deduplication, Metadata

Manager, and File Transfer Module. File Preprocess

Module is responsible for calculating the keys of files by

Hashing algorithm. Local Deduplication discards

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63205 880

duplicated data successively at the file-level as well as

chunk-level deduplication. Metadata Manager maintains

the keys of files and chunks that had been uploaded to

Snode in order to prevent the duplicated data from being

uploaded repeatedly. File Transfer Module is used to

transfer the metadata to MS which is processed by local

deduplication .[3]

Client

File preprocess

Local Deduplication

Metadata manager

 File transfer Module

Snode

Store module

Metadata Manager

SelfCheck and report

module

DelayDedupe Module

Fig . System Architecture

There are two modules in MS:- Filter Module and Update

Module. Filter Module is responsible for filtering

duplicated data from different clients. Update Module is

used to update the metadata index in MS according to the

modified metadata information from Snode.

Snode has four modules : Store Module,
Metadata Manager, Self-check & Report Module, and

DelayDedupe Module. Store Module is used to store the

actual data . Metadata Manager maintains the metadata

information including the key and reference of the chunk

stored in Snode. Self-check & Report Module detects the

duplicated data for data modification by different users

and reports the modified metadata information to MS.

DelayDedupe Module determines whether the duplicated

chunk is hot. To realize the function of each module in this

system, Client, MS, and Snode need to maintain various

data structure and tables.

1)Client: Client‟s Metadata Table often refered as CMT is

a table used to store the keys of files and chunks at file-

level and chunk-level deduplication , hence avoiding

uploading of the data again. CMT is present on every

client Each record in CMT is stored as:

(filefp, chunk fp, chunk fp, ・・・, chunk fp) where file

fpis to the key of a file, and

chunkfpis the key of the chunk. Each

chunkfpmust be kept by the sequence of the file

segmentation.

2) MS: MS is the metadatserver . It is responsible for

storing the chunk metadata in Snode as well as to avoid
duplication globally. Chunks are stored across the

different, which makes it difficult to access the file. Also,

there is FRT (File Reconstruction Table). Using this ,

Client can obtain the chunks of respective files stored at

different snodes, quickly to reconstruct Metadata Table

(MMT) and File Reconstruction Table (FRT).

a) MMT: Each record consists of:

(chunkfp,Snodeip, reference count, user id)

wherechunk fpis the key of a chunk

user id is the user identifier sharing the chunk. Both of
them are unique globally. Snodeipstores the ip address of

Snode where chunk is stored .

reference count represents the reference count of the

chunk. It is used to store the number of files which share

the respective chunk . If reference count is equal to 0 ,

then that chunk can be removed physically from the Snode

b) FRT: It is used to reconstruct a file requested by the

MS

Filter module

Update Module
 MS

S

M

S

Cloud

Client Client

Snode Snode

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63205 881

user quickly. Once the keys for files requested by user

are received , Meta Server firstly obtains Snodeipof their

chunks with the help of FRT and MMT. Each record

consists of :

(filefp, chunk fp, chunk fp, ・・・, chunk fp) where

file_ipis key of the file

Chunk_fpis key of the chunk

3) Snode: There exists a metadata table for each Snode

used to store the address of the chunks. Incase a chunk
resding in Snode is modified , key of that particular chunk

is modified and compared with the local Snode‟s Metadata

Table (SMT) to check for duplication of data .The main

purpose of SMT is to maintain the mapping between

address and the key of chunk . Each record in SMT

consists of :

(chunkfp, offset, reference count, access num)

Where ,chunk fp is the key of a chunk stored on local disk,

and offset gives the physical address of the chunk. Here,

reference count is the same as the one in MMT.

accessnummaintains the amount of times particular chunk

was accessed.

B. Detection and elimination of duplicated data

1) Avoid duplication at each client:

Usually, in different types of applications the amount of

data shared is negligible. But, there‟s a high probability of

duplicated data in different files having same type and size

[1]. For achieving better efficiency of deduplication, our

system performs file-level as well as chunk-level

deduplication at each client. Steps are as follows:

a) Collect the attributes of file to be uploaded such as file

size, file type. Then classify the files according to the

file type in ascending order of file size.

b) Calculate th key for each file using SHA-1 algorithm.

c) The key generated is compared with the keys stored in

CMT. If the keys are same , then goto step g)

d) Now, again classify the files according to files greater

than a particular size and less than that size. For the files

greater than that size , use chunking algorithm to divide
the file into blocks of a particular size(say 64kb)

e) For the chunks generated in previous step , calculate the

key for each of the chunks.

f) Again, compare the chunk keys with chunk keys stored

in CMT.

g) Remove the duplicated data. Store the metadata

information.

2) Avoiding data duplication at MS:

As stated earlier, MS is used to store the metadata of all

data stored in Snodes. It can be thought of a bridge
between client and Snode. MS basically avoids the

duplicated data in Snode as well as client by comparing

the keys tored in MMT.

Steps are as follows:

a) First step is to receive the metadata from clients

and then read the keys of file in some sequence.

b) memory, disk and buffer is checked for key index . If

the same key is found then send “found” message to

client. If the key is found then update the reference

count else send “Not found to client ”

c) Store the keys and the data not found in Buffer

3) Avoid duplication of data at each Snode:

In the above mentioned steps the duplicated data is

removed from the client globally as well as locally .the
chunk can be acceseed directly by the user using the

snode_ip and the data can be modified in snode itself This

may result in new duplication.

Steps to avoid the newly generated duplication:

a) Request : The modification of chunk is received by

Snode i. Let the modified chunk be A . A is copied to

memory .

b) Modify : A is modified by the „i‟ Snode in memory.

Let this modified chunk be called as B then , the key of B

is calculated by using SHA-1 .

c) Check :Now , Snode i compares B‟s key with the keys it
has in its SMT . If not, go to step e) else the existing chunk

that is same as B is denoted as B‟.

d) Deduplicate: The pointer pointing to address of B‟

rather than B itself is stored .

e) Store: Store B and updation of the SMT is done.

f) Check: The updated data is sent to MS by Snode i,

where MS checks for duplicated data in Snode (j_= i)

If found, then go to step h).

g) Duplicate: B is a new chunk and MS needs to create

replicas for it in other snodes.

h) DelayDedupe: It uses or applies the DelayDedupe
strategy for B.

IV. DELAY DEDUPLICATION

Often, users complain about the delay system takes to give

access of data user wants. Also because of the system

downtime or may be in some situation like hardware or

software damage system may collapse and because of

which data availability gets affected. So, the cloud storage

system should be developed such that it should handle

such system downtime and provide users the data file he
wants in lesser time. Thus, for this purpose this system is

using the concept of replica creation and management of

these replicas across the systems. Replica management is

the way to increase data availability.

In this initially we are maintaining three replicas of each

chunks. These three replicas are in different snodes. The

number of replicas [2] for each chunk are created and
managed afterwords by the replica manager according the

access of that chunk by different users. Hence, by creating

these replicas the system bottlenecks will get reduced and

system will become more efficient. Also by using replica

management the replicas are created only for those chunks

which are accessed frequently by the clients.

Creating replicas for the chunks which are rarely accessed

by clients will increase cost of system and also those

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63205 882

replicas will occupy more space in the memory which will

lead to memory management issues for the chunks that

actually requires space in memory because of there

frequent access.

This is basically done by calculating frequency access of

each chunk and comparing it with the standard ideal value

for the access of chunk we have set for the system.

Different replicas of the same data should be equally

available to each client and they should be updated

properly each time.

A) HOT DATA: In the big data system the data that

is accessed frequently is called as hot data.[2] The

frequency access of the data is used to determine whether

the data is hot or not. The data which is not hot is termed
as cold data which is not accessed frequently or is rarely

accessed.

FreqAccess>α

FreqAccess means the average access frequency of the

particular chunk and α represents ideal value for the

access defined for the system.

How to calculate FrequencyAccess:

FreqAccess = ∑ Aj (tp+1) − Aj (tp)

 J € z
tp+1 – tp

, i, j ∈ Z, i = j, tp+1 >tp

Above is the formulae to calculate frequency access for

the given chunk.

There are n Snodes. In Snode i, chunk A is modified by a

user (denoted as B) at tp+1, and chunk B is found in Snode

j as described in the first case. Therefore, chunk B in

Snode i is duplicated. Z is the set of the id of Snode where
chunk B is found. In Snode j, Aj (tp) denotes the access

num of chunk B at tp and Aj (tp+1) at tp+1, respectively.

B) DelayDedupe: Delay deduplication is the strategy

in which we are temporarily delaying the deduplication of

the particular chunk if it is a hot duplicated chunk in some

storage node.

If FreqAccess of chunk B is bigger than α, B is a hot

chunk in some storage node. At the same time B is also

present in some other storage node so here, in that case

instead of eliminating the chunk B we delay the
elimination of chunk B as it is a hot duplicated chunk. In

this way we are maintaining the availability of the data

and reducing the pressure on the system by creating more

replicas of chunk B and store them on server nodes

according to the space available using load balancing

algorithm.

To illustrate the method specific steps are given as

follows:

1. MS decides whether the chunk B is hot chunk or

not by the formula specified previously:

2. Calculate S at tp+1 by equation (7). S means the

average remaining storage space of n Snodes, Sm(tp+1)

denotes the rest storage space of Snode m at tp+1.

S = ∑n Sm(tp+1)

 m=1 n

3. Compare S with Sk(tp+1) of Snode k where non-

hot chunk B is found (k ∈ Z), and remove chunk B in

Snode k (the optimal Snode) where Sk(tp+1) is the

smallest. Update metadata in MS.

4. Don‟t remove hot chunk B and synchronize with
Snode j at

tp+1, then go to step a) at tp+2 (tp+2 > tp+1).

Fig 2. Flowchart of process

MODIFIED DATA

DMATA

COMPARE KEY

START

REMOVE,
UPDATE

Exist??

EXISTS?
CREATE

REPLICAS

COMPARE KEY IN MS

CALCULATE Faccess

FreqAccess

 ≥ α

HOT REPLICAS

REMOVEAN

D UPDATE

MS

FINISH

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.63205 883

V .CONCLUSION

In this paper we proposed the architecture of deduplication

system for file server and cloud server storage

environment and give the process of avoiding

deduplication in each stage. Also the data is stored at

different servers using load balancing . From this it is

concluded that user will be able to avoid deduplication of

data over sever and will store the data according to the
loads

ACKNOWLEDGMENT

We would like to thank the reviewers for their detailed

comments, suggestions and constant support throughout

the reviewing process that helped us to significantly

improve the quality of paper.

REFERENCES

[1] XiaolongXu and Quntu , “Data Deduplication Mechanism For

Cloud Storage Systems,” in Nanjing University Of Posts And

Telecomunication Nanjing, China, 2015

[2] P. Xie, ”Survey on deduplication techniques for storage systems,”

Computer. Sci., vol. 41, no. 1, pp. 22-30, Jan. 2014.

[3] B. Cai, F. Zhang, and C. Wang, ”Research on chunking algorithms

of data de-duplication,” in Proc. 2012 Int. Conf. Commun.,

Electron. and Automation Eng., Berlin, 2013, pp. 1019-1025.

[4] Y. Fu, N. Xiao, and F. Liu, ”Research and development on key

techniques of data deduplication,” J. Comput. and Res., vol. 49, no.

1, pp. 12-20, Jan. 2012.

[5] T. Zeng,”Research and implementation of data deduplication

technology,” M.S. thesis, Dept. Comput. Architecture, Huazhong

Univ. Sci. and Tech., Wuhan, Hunan, 2011.

