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2D Thermocapillary Motion of Three Fluids in a Flat
Channel

Victor K. Andreev*

Elena N. Cheremnykh'

Institute of computational modelling SB RAS
Akademgorodok, 50/44, Krasnoyarsk, 660036
Institute of Mathematics and Computer Science
Siberian Federal University

Svobodny, 79, Krasnoyarsk, 660041

Russia

Received 17.05.2016, received in revised form 12.08.2016, accepted 15.09.2016

Two-dimensional creeping motion of three immiscible, incompressible viscous fluids in a flat channel
bounded by fixed solid walls, on which the temperature distribution is known, is investigated. The motion
is induced only by the thermalcapillary forces beginning from the state of rest. Unsteady motion is
described by finite analytic formulas obtained by Laplace transform in images. The evolution of the
velocity fields to the stationary regime for specific liquids is obtained by the numerical inversion of Laplace

transformation.
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It is well known that in a non-uniformly heated liquid a motion can arise. In some applications
of liquid flows, a joint motion of two or more fluids with surfaces takes place. If the liquids are
not soluble in each other, they form a more or less visual interfaces. The petroleum-water system
is a typical example of this situation. At the present time modelling of multiphase flows taking
into account different physical and chemical factors is needed for designing of cooling systems
and power plants, in biomedicine, for studying the growth of crystals and films, in aerospace
industry [1-4].

Nowadays, there are exact solutions of the Marangoni convection [5-7]. One of the first
solutions was obtained in Napolitano [8]. This is the Poiseuille stationary flow of two immiscible
liquids in an inclined channel. As a rule, all such flows were considered steady and unidirectional.
The stability of such flows was investigated in [9,10]. As for non-stationary thermocapillary flows,
studying of them began recently [11,12].

Thermocapillary convection problem for two incompressible liquids separated by a closed
interface in a container was investigated in [13]. Local (in time) unique solvability of the problem
was obtained in Holder classes of functions. The problem of thermalcapillary 3D motion of a
drop was studied in [14]. Moreover, its unique solvability in Holder spaces with a power-like
weight at infinity was established. Velocity vector field decreases at infinity in the same way as
the initial data and mass forces, the temperature diverges to the constant which is the limit of
the initial temperature at infinity.
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The present work is devoted to studying of solutions of a conjugate boundary value problem
arising as a result of linearization of the Navier-Stokes system asupplemented with temperature
equation. The description of the 2D creeping joint motion of three viscous heat conducting fluids
in flat layers is also provided here. The motion arises due to thermocapillary forces imposed along
two interfaces, after which the unsteady Marangoni convection begins. Such kind of convection
can dominate in flows under microgravity conditions or in motions of thin liquid films.

1. Statement of problem

The two-dimensional motion of three viscous incompressible heat conducting fluids in the
absence of mass forces is described by the system

1
U + Uty + vuy + ;px = V(Ugaz + Uyy),

V¢ + UV + VUy + ;py = V(wa + Uyy)v
Uy + Uy = 07
O; +u0, + 10, = X(Oux + Oyy).

Here u,v are the components of the velocity vector, p is the pressure, © is the temperature, p
is the density, v is the kinematic viscosity, x is the thermal diffusivity. The values of p, v, x are
represented by constants.

We find the exact solution in the form

u(z,y,t), v(y,t), p(z,y,t), Oz,y,t).
In such case, the first three equations of system (1) lead to the relations
U,ZIU(y,LL)Z‘—FUl(y,t), w+vy:O,

wy + vwy + w? = f(t) + vwy,,

1
—p=d(y,t) — —-z*,
p
dy = Vyy — Uy — VVy, Uty + VUL, +uw =0

with an arbitrary function f(¢).
With respect to the temperature field we assume that it has the form

O = a(y,t)2” + a1 (y, )z + b(y, 1). 3)

It will be seen, Eq. (3) has a good agreement with the conditions at the interfaces.

The stationary solution of the Navier-Stokes equations in the form (2) for ¢ = 0 for pure
viscous fluid was found for the first time by Hiemenz [15]. It describes the liquid inpingement
from infinity on the plane y = 0 under the no slip condition on it. In the paper Brady and
Acrivos [16], this solution for the flow between two plates or for the flow in a cylindrical tube
(axisymmetric analogue of solution (2)) was applied.

It is known that the temperature dependence of the surface tension coefficient is the one
of the most important factors leading to the dynamic variety of the interfacial surface. In the
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papers Bobkov and Gupalo [17], Gupalo and Ryazantsev [18]| the stationary solutions in form
(2), (3) was found at a(y,t) = 0, b = const for a flat layer with a free boundary y = I = const
and a solid wall y = 0. The non-uniqueness of solution depending on the physical parameters of
the problem was revealed. A similar problem in the case of half space was investigated in Gupalo
et al. [19].

Further, we assume that ui(y,t) = 0,a1(y,t) = 0. The latter means that the temperature
field has an extremum at the point = 0, more precisely, at a(y,t) < 0 it has a maximum and
at a(y,t) > 0 it has a minimum. Let us apply the solution in the form (2), (3) to describe the
joint flow of three immiscible liquids in flat layer 0 < y < I3 and take into account that the walls
y =0, y = I3 are solid (see Fig. 1). By introducing the index j = 1,2, 3 fixing the fluid and using

Yy
O=a,()x*+by(1)

luquid 3
L n liquid 2
liquid 1

O=a(x+b )/ L

Fig. 1. The domain of the fluids flow

Egs. (2), (3) we find that, in their domains, the unknowns satisfy the equations
Wit + Vjwiy + Wi = viwiyy + f(t),
Vjt + VjVjy + djy = ViVjyy,
wj + vjy =0, (4)
aje +2W;a; + Vjajy = Xjajyy,
bjt +vjbjy = X;jbjyy +2X;0;-
On the interfaces y = I, (x,t), n = 1,2, there are the conditions

wl(ll(a:,t),t) = ’wg(ll(l‘,t),t), wg(lg(x,t),t) = w:),(lg(l‘,t),t),

(5)
’()1(l1(.1',t>7t) = Ug(ll(l‘,t),t), Ug(lg(l‘,t),t) = ’U3(12(£C7t)7t>,
l1¢ + 2w (ll(.T, t), t)llm = (ll(l‘, t), f,), loy + J)U}Q(lg(l‘, t), t)lgw = ’Ug(lg(ﬂ?, t), t), (6)
a1 (li(z,t),t) = ag(li(2,1),t), as(la(z,1),t) = az(la(z,1),1),
8&1 (’)ag 8&2 8&3 (7)
kig—=keog—, kog— =ks—,
6711 3n1 ang 8”2
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where k; > 0 are the thermal conductivities, 7, = (—lys,1)/ (14 12,)'/? are normals to the
curves y = l,(z,t), n = 1,2. Dynamic conditions at the y = [,,(z,t) are

(p1 — p2)n1 + [2p2v2D(ug) — 2p1v1 D(uy)ng = 201(01)K1n; + Vi 01, )
8
(p2 — p3)nz + [2psv3D(u3) — 2parveD(ug)ng = 202(02)Kony + Vi 0.

In (8), D is the tensor of velocities deformation u; = (zw;(y,t), v;(y,t)) and, in the right-hand
sides, V11 = V — (n - V)n denotes the surface gradient, values K,, = Iz, (1 +12,)73/? are the
average curvatures of the interfaces y = ,,(x,t); 01(01), 02(0O2) are surface tension coefficients
which depend on the temperature. For the majority of liquid media, the dependence

0,(0,,) is well approximated by a linear one

O'n(@n) = 0'2 — &,0,, (9>

where 2, > 0 are the temperature coefficients of surfaces tension of lines y = I,,(x,t). They are
considered constants and determined experimentally.

Dynamic conditions (8) are given in the vector form. Projecting them to the tangential
directions 7, = (1,1,,)/(1 +12,)"/?, using the dependence (9) and equalities (2) we obtain

(w2 D(uz) — piD(u)]my - 71 = —221V110y - T4, 0)
10
(3D (uz) — peD(ug)]ny - 72 = —2e2V1102 - T2,

where p1; = p,v; are the dynamic viscosities of liquids. Projections (8) on the normals n; o
provide the relations

[p2f2(t) — p1fr(t)]2?
2

prdi(l(z,t),t) + = pada(li (2, 1), 1)+
+[2p2D(u2) — 2pu1 D(uy)|ng - ny =

= (U(l] — &1 [al(ll(xa t)’ t)xQ + bl(ll ('17’ t)7 t)])llww(l + l%w)_3/27

(11)
t) — t)]z?
p2d2(12(xa t)7 t) + [p3f3( ) 2p2f2( )] - P3d3(12(1'7 t)? t)+
+[2/L3D(U3) — 2M2D(u2)]n2 ‘Ng =
= (O’S — &9 [ag(lg(a?, t), t)xQ =+ bg(lg(.%’, t), t)]) l2I$(1 + l%z)_3/2.
Boundary conditions on the solid walls y = 0,y = I3
U1(07t) = 0, U3(l3,t) = O, ’U1(07t) = 0, U3(l3,t) = 0,
(12)

al(O,t) = CLlo(t)7 ag(lgﬂf) = ago(t)

with specified functions a1g(t),azo(t). Initial data for the velocities are zero (we study the
properties of the solution of problem, which models the motion only under thermocapillarity
forces)

u;(y,0) = 0, v;(y,0) =0, (13)

moreover
In(2,0) = Ih(2), a;(y,0) = aj(y). (14)
Note the following features of the problem. It is nonlinear and inverse, since functions f;(t) are
unknowns as well. It is easy to understand this, if we exclude the functions v;(y, t) from equations
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of mass conservation. Then the problem reduces to the conjugate problem for functions w;(y, t),
fi(t), aj(y,t) u ly(x,t). The problem for functions b;(y,t) separates at the known functions
vj(y,t) and a;(y,t), boundary conditions for the functions b;(y,t) are similar to conditions for
the functions a;(y,t). The functions d;(y,t) can be restored by quadrature from the second
equations (4) up to time functions. So the functions w;(y,t), v;(y,t) a;(y,t) are the solutions of
nonlinear parabolic equations with boundary conditions (5)—(7), (12) and initial data (13), (14).
The last two conditions in (5) and the fourth in (12) are helpful for determining of the functions
().
We introduce the characteristic scales of length, time and functions w;,v;, a;, d;, f; to simplify
the problem (4)—(7), (10)—(14)
. g’ 3e1aol(f’ aegaol(lm’ o0 ety
V1 1 M1 p1 p1l?

aelaol(f &1(10

respectively, where [ = const > 0 is the average value of the layer thickness of the first liquid at
t=0,a"= max laso(t) — a1o(t)| > 0 or a® = max max la%(y)| > 0 when a1o(t) = aso(t).

In the dimensionless variables, Marangoni number M = 3ela0l(1)3uf11/f 1 appears at the
nonlinear summands in eq. (4). The same will be in kinematic conditions (6) at the linear
summands containing velocities. It is supposed that temperature coefficients of surface tension
are comparable in magnitude a1 ~ @5 and M < 1. The latter takes place in thin layers or at
very high viscosities. Thus, nonlinear summands can be neglected and equation becomes linear.
In particular, kinematic conditions take the form l,,; =0, so l,, = l,(x),n = 1,2.

Let us turn to dynamic conditions (11). After introducing dimensionless variables, in the
right side capillary number Ca,, = a%1$%z; /0" appears instead of ¢y u ¢J. In real conditions,
for the majority of liquids Ca,, < 1, for example, for system water - air Ca ~ 1075, Therefore,
at such capillary numbers, conditions (11) take the form l,,,, = 0 that is [, () = a,z + 9.

Further we assume that «,, = 0 and the surfaces are planes y = 19, y = 19 > 19, which are
parallel to solid walls y = 0,y = [3; index "0" in 2 is omitted.

We can write out the whole linear problem in the dimensional form
w]t:V]wjyy+fJ(t)’ j:17273a (
w;(y,0) =0, (16
wl(O,t) = 0, wg(lg,t) = U, (
wi(l,t) = wa(ly,t), wa(la,t) = ws(la,1), (
‘LLQwa(ll,t) — lely(llat) = 72&1al(ll,t s
p3way(la, t) — paway (l2,t)

ll l2 13
/ wy (y,t) dy = 0, / wa(y,t) dy =0, / ws3(y,t) dy =0, (20)
0 l

5
where 0 <y <lyforj=1,0; <y <lyforj=2andls < y <l3for j = 3. Conditions (19) follow
from (10), because 71 = 72 = (1,0) and V11012 - T1,2 = 2a1 22, according to the expression for
the temperature (3). The first two equalities in (2) follow from kinematic conditions (6) and the
last one is the no slip condition v3(l3,t) = 0.

We write the problem for the functions a;(y,t) as follows

ajt = Xjjyy; (21)
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a;(y,0) = aj(y), (22)

a1(0,t) = a10(t), as(ls,t) = aso(t), (23)

a1(ly,t) = as(ly,t), as(le,t) = asz(ls,t), (24)
kia1y(li,t) = koaoy (L1, t), kaaoy(la,t) = kzasy(la,t). (25)

2. Stationary flow

Problem (15)—(25) has a steady state, according to which the stationary flow of three immis-
cible, incompressible viscous fluids are described by formulas

aj(§) =al+ajy, 0<E&=y/lh <1,
a3 =a((§—Dki+1)+afy, 1<E<1/l,

(€)= Rukaile = )+ oo, 1/l <€ </l
AU

E— (2¢ - 3¢?)
2y il = DUHATE=1) (3, o= )
my mq ! my

1<€<1/Z1,

Ml—m"’(z}—n], 0<&=y/l <1,
my

)20 (6 1)] . (26)

3m61_1 _2 -2

I: I
@@Pﬂm@—iﬂ—qb_nﬁ+ll)+
1/l <& <la/ly,

m2m5(l_1 — 1) . Mll—% _ MQ],
mimay mi

s 311U fiame

6l — 1)
-

o 6[1m5

It

(M -zm-v). 5 -

V1imgy ’ 3 171(1_2 — 1) ’

where @} = wjufll%, a = li(a3g — ajy)/m, functions af, w3, f5 are the stationary solutions of

problems (21)—(25), (15)—(20), a$,, a5, are the constant values on the walls y = 0 and y = I3
respectively, [ = 11/12, lo = lg/lg, k, = k,L/k7L+1, Hn = ,Un/p’n+1v v = 1/1/1/2, Uy = I/3/U2,
M, = aenai(ln)yl_lugl are the Marangoni numbers and constants m, mi, mo, ms3, My, My, Mg

are calculated by the formulas
m=T+ (=) + (I — Dks, m1 =2 — 2li(l — 1),
mo =312 — 4yl (I — 1), m3 =13 — i (I — 1),
my = mafiz(ly — 1) — dms(l; — 1),

fio(ly — 1) (M, 13 + M.
m5:u2(2 )(— s 2ml)—2M1l_2’
Ih—1 !
_ M2
g = 275 (7, _ ) Mli
mimay mq

— M.
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3. Non-stationary motion

To describe the non-stationary motion of three viscous thermally conducting liquids, the
Laplace transformation is applied to problems (15)—(20), (21)—(25) (assuming that initial data
(22) are zero). As a result, we come to boundary value problem for images @;(y, p) of functions

a; (y’ t)

pX; 'aj(y,p) — djyy(y,p) =0, (27)

a1(0,p) = aio(p), as(ls,p) = aso(p), (28)
a1(l1,p) = a2(l1,p), ax(lz,p) = as(l2, p), (29)
kraiy(li,p) = kodoy(l1,p), k2a2y(l2,p) = ksasy(l2,p) (30)

and images w(y, p) of functions w(y, t)

pv; b (y, p) — Wiyy (v, p) = v; (D), (31)
w1(0,p) =0, 3(l3,p) =0, (32)
w1(ly,p) = w2l p), W2(l2,p) = w3(l2,p), (33)
paay (1, p) — p1ty(ly, p) = —2ee1d1 (11, p),
p) =

psWsy (l2, p) — pothay(l2, —2ae9a5(l2, p),

l1 lo I3
/ 1 (y,p) dy =0, / wa(y,p) dy =0, / w3(y,p) dy = 0. (35)
0 I 2

In condition (28) and equation (31), a10(p), aso(p), f;(p) are images of functions a10(t), aso(t), f(t)
respectively.
The solutions of problems (27)-(30), (31)—(35) can be written as

i(y,p) —dlsh / y+d2ch / ,
ﬁ)j Y, D) :cjsh /—y—l—cjch /—y—i—
Vj Vj
The values cl1 a2, ¢

2, cj, ¢ and fi(p) are determined from the boundary conditions (28)—(30), (32)~
(35). The type of these values is not presented here because of its complexity.

(36)

Remark 1. The solution for the functions a;(y,t) was obtained for the zero initial condition
(22). Since the problem (21)—(25) is linear, this problem can be solved for non-zero conditions
and when conditions (23) are uniform, boundary conditions (24), (25) remain unchanged and

equation (21) has the form pa;(y,p) — Xj_ldjyy(y,p) — ag(y) =0.
Let us assume that HHOIO aro(t) = a3y, k = 1,3. Using formulas (36) and expressions for the
values dj , d],c],c], fj( ) we can prove the limit equalities
Z{ig})pdj(y,p) = a3(y), ;ig%pwg‘(y,p) = w;(y),
lim pf; (p) = f},
where a3(y), w3 (y), f; is determined by formulas (26).
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4. Numerical results

Let us apply the numerical method of the inverse Laplace transformation to obtained formu-
las (36). It is enough to show only the pictures for velocities, because they have zeal physical
inrepretation. All numerical calculations were made for the system of liquid silicon - water - air
(thickness of the layers is the same and equal to 1 mm). The corresponding values of the defining
parameters are given in Tab. 1.

Table 1. Physical properties of liquids

Ttem liquid silicon water air

p, kg/m? 956 998 1.205
v x 1075 m?/s 10.2 1.004 15.11
k, kg-m/s®- K 0.133 0.597  0.00257
x x 1076, m?/s 0.0675 0.143 21

e x 107 kg/s?- K 6.4 15.14 —

Figs. 2, 3 show the profiles of the dimensionless functions w; (£) (see 26) and transverse velocity
5 (&) for the case when M; = My = 0.0005. Expressions for the velocities v3(§) = v‘fz/flll were

found from the equation of mass conservation (the third equation in (4))

Yy

wlnt) =~ [ D, t) dy, sl t) = [ty
) = - [ " wa(y, ) dy.

l2

In particular, Fig. 2 shows that the function w;(f) is negative close to the interfaces £ = 1 and
&= l_l_ 1'— 2, so the reverse flow arises here.

W

!

-30 -20 -10 0 g;; %107

Fig. 2. The stationary profile of function w3 (€)
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P %107
ij

(¥

Fig. 3. Stationary profile of transverse velocity 5 (§)

Fig. 4 shows the velocity field in the layers and Fig. 5 shows the velocity field close of the
interfaces ¢ = 1 and ¢ = 2. Since aj(1), as(l;') > 0 (@j(1) = 79.7, ax(I;') = 33.1), the
temperature field at # = 0 has a minimum (see (3)). Consequently, in the axial = direction
temperature increases and the surface tension decreases (see (9)), so reverse flow occurs close to
the interfaces.
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Fig. 4. The velocities field

Fig. 6 shows the convergence evolution of functions w;(&, ) and transverse velocity 7;(§, )
to the stationary regime for the case when a@;(0,7) = 1+5e¢%%7 sin(7), as(3,7) = 0, 7 = vyl 't
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is the dimensionless time (in our case, the real time ¢t = 1027). As it is seen in the pictures,
at 7 = 800 curves almost coincide with the stationary solution. Fig. 7 shows the results of
calculations when a4 (0,7) = 2sin(0.017), az(3,7) = 0. That is the limit of @;(0,7) at 7 — oo
does not exist and, as it can be seen from the figure, the velocity field does not converge to the
stationary one.

a) b} .
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Lt e N I e W o Y NA 1id e
L e e T S ) [ i R L T PRV A
{---—-—---—--.-.-.'-,'\f-',—-—-v-—-—-.-—-.—-.. R B I I v P e ey
1.034 200 e Ny Y L dd e wra ww
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0 Z 0

o

2 V; x10°

b)

-40 20 0 ij <1078

Fig. 6. The convergence evolution of functions @;(&¢,7) (a) and transverse velocity 7;(&,7) (b)
to the stationary regime: a1(1,7) = 1 + 5e=%%7sin(7), a3(3,7) = 0, stationary regime (—),
7 =24(——), 7 =400(——), 7 =800(--)
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Fig. 7. The dimensionless profiles of functions @;(&,7) (a) and transverse velocity v,(&,7) (b):
a1 (1,7) = 2sin(0,017), as(3,7) = 0, stationary regime (—), 7 = 470 (——), 7 = 850 (— - —),
7 =1070(---)
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JIByMepHOe TepMOKaNWIJIAPHOE JBUKEHNE TPeX KMJIKOCTeit
B IIJIOCKOM KaHaJie

Bukrop K. Auapeen

Enena H. Yepemubix
WucturyT BeraucanTeasHoro mogenuposannss CO PAH
Axanemroponok, 50/44, Kpacrospck, 660036

Hccenedosaro deymeproe noasyusee deusicenue mpexr HeCMEUUBAOUUTCA HECHCUMAEMBLT BAZKUL MEN-
AONPOBOOHBLT dicudKOCMmeET 8 NAOCKOM KAHANAE, 02DAHUMENHOM MBEEPILMYU HENOOBUNCHBIMU CMEHKAMU,
HA KOMOPHIT U36eCmHo pacnpedeserue memnepamyp. B obpasax no Jlanaacy nocmpoeno mournoe necma-
yuoHapHoe pewenue 6 sude K8adPAMYP U NPUBELIEHb, HEKOMOPBIE YUCAEHHBLE PE3YALMAMBL NOBEOCHUS
noaetl ckopocmet; 4 MeMNEPAMYP 6 CAOAL.

Karouesve caosa: mMmepmoranuinNAPHOCTMD, NOGEPITHOCTMD pasdma, Mamemamuvecroe Mo@enupoeanue,
HUCAEHHDBLE IKCNEPUMEHTTBL.
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