Effect Cd Doping on the Structural and Optical Properties of ZnO Thin Films

Article Preview

Abstract:

ZnO thin films with Cd/Zn nominal ratios of 0%, 1%, 3%, 5%, and 7% and thickness of 0.7 μm were prepared by chemical spray pyrolysis. X-ray diffraction patterns showed that the films have polycrystalline structures and peaks matching the hexagonal ZnO structure. Crystallite sizes ranged from about 35 nm to 87 nm. As the doping concentration increased, full width at half maximum values decreased and crystallite sizes increased. The UV-Vis spectra of the ZnO:Cd films showed high transparency in the visible region. The optical band gap of the ZnO:Cd films decreased from 3.255 eV to 3.17 eV with increasing Cd doping concentration. The transition type was direct, thereby allowing transition. The ZnO:Cd thin films were annealed at 400 °C, and annealing treatment showed improvements in the properties of the derived films.

Info:

Pages:

137-150

Citation:

Online since:

June 2013

Export:

* - Corresponding Author

[1] G. Li, X. Zhu, X. Tang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, S. Dai, Journal of Alloys and Compounds 509 (2011) 4816-4823.

DOI: 10.1016/j.jallcom.2011.01.176

Google Scholar

[2] A. A. Yousif, A. J. Haidar, N. F. Hbubi, Int. J. Nanoelctronics and Materials 5 (2012) 47-55.

Google Scholar

[3] C.M. Muiva, Y. S. Sathiaraj, K. Maabong, Ceramic International 37 (2011) 555-560.

Google Scholar

[4] J. Naya, S. Kimura, S. Nazaki, H. One, K. Uchida, Superlattices and Microstructures 42 (2007) 438-443.

Google Scholar

[5] G. Santana, A. Morales, O. Vigil, L. Vallant, F. Cruz, G. Contreras, Thin Solid Films 373 (2000) 235-238.

DOI: 10.1016/s0040-6090(00)01142-1

Google Scholar

[6] Y. Yang, H. Chen, B. Zhao, X. Bao, Journal of Crystal Growth 263 (2004) 447-453.

Google Scholar

[7] R. Ayouchi, D. Leinen, F. Martin Gapas, E. Dalchiele, J. R. Barrado, Thin Solid Films 426 (2003) 68-77.

Google Scholar

[8] F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, Superlattice and Microstures 47 (2010) 732-743 .

DOI: 10.1016/j.spmi.2010.02.006

Google Scholar

[9] A. E. Suliman, Y. Tang, L. Solar Energ. Materials and Solar cells 91 (2007) 1658-1662 .

Google Scholar

[10] S. D. Shine, G. E. Patil, D. D. Kajale, V. B. Gaikwad, G. H. Jain, Jornal of Alloys and Componds 528 (2012) 109-114 .

Google Scholar

[11] F. Paraguay D., M. Miki-Yoshida, J. Morales, J. Solis, W. Estrada L., Thin Solid Films 373 (2000) 137-140 .

DOI: 10.1016/s0040-6090(00)01120-2

Google Scholar

[12] R.Y. Hong, J. Z. Qion, J. X. Cao, Powder Technology 163 (2006) 160-168.

Google Scholar

[13] D. Zaouk, Y. Zaatar, R. Asmar Jabbour, Microelectronics Journa l37 (2006) 1276-1279.

DOI: 10.1016/j.mejo.2006.07.024

Google Scholar

[14] M. Tortosa, M. B. Mair, Journal of Crystal Growth 304 (2007) 97-102.

Google Scholar

[15] H. S. Kang, S. H. Lim, J. W. Kim, H. W. Chany, G. H. Kim, S. Y. Lee, Y. Li , J. Lee, J. K. Lee, M. A. Nastusi, S. A. Crooker, Q. X. Jia, Jornal of Crystal Growth 287 (2006) 70-73 .

DOI: 10.1016/j.jcrysgro.2005.10.045

Google Scholar

[16] K. J. Chen, T. H. Fang. F.Y. Hung, L. W. Ji, S. J. Chang, S. J. Young, Y. J. Hsiao, Applied Surface Science 254 (2008) 5791-5795 .

DOI: 10.1016/j.apsusc.2008.03.080

Google Scholar

[17] K. Sakurai, T. Takagi, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, S. Fujita, Sh. Fujita, Journal of Crystal Growth 237-239 (2002) 514-517 .

DOI: 10.1016/s0022-0248(01)01954-6

Google Scholar

[18] A. Erol, S. Okur, B. Comba, O. Mermer, C. Arikan, Sensors and Actuators B: Chemical 145(1) (2010) 174-180.

DOI: 10.1016/j.snb.2009.11.051

Google Scholar

[19] D. Zhao, Y. Liu, D. Shen. Y. Lu, J. Zhang , X. Fan, Journal of Crystal Growth 234 (2002) 427-430 .

Google Scholar

[20] B. L. Zhu, C. S. Xie, D. W. Zeng, W. L. Song, A. H. Wang, Materials Chemistry and Physics 89 (2005) 148-153 .

Google Scholar

[21] Z. Ben Achour, T. Ktar, B. O. Touagyar, B. Bessais, J. Ben Brahim, Sensors and Actuators A 134 (2007) 447-451 .

Google Scholar

[22] C. Cumus, O. M. Ozkendir, H. Kavak, Y. Ufuk tepe, Journal of Opticalectronics and Advanced Material 8 (2006) 299-303.

Google Scholar

[23] F. Paraguay, W. Estrada, D. R. Acosta, E. Andrade, M. Miki-Yoshida, Thin Solid Films 350 (1999) 192-202 .

DOI: 10.1016/s0040-6090(99)00050-4

Google Scholar

[24] S. Vijayalashmi, S. Venkataraj, R. Jayavel, J. Phys. D: Appl. Phys. 41 (2008) 245403 (7PP).

Google Scholar

[25] G. Santana, A. Morales, O. Vigil, L. Vallant, F. Cruz, G. Contreras, Thin Solid Films 373 (2000) 235-238 .

DOI: 10.1016/s0040-6090(00)01142-1

Google Scholar

[26] D. Zhang, F. Zeng, J. Mate. Sci. 47 (2012) 2155-2161 .

Google Scholar

[27] J. Z. Liu, P. X. Yan, G. H. Yue, J. B. Chang, R. F. Zhuo, D. M. Qu, Matterials Letters 60 (2006) 3122-3125 .

Google Scholar

[28] P. Mitra, J. Khan, Material Chemistry and Physics 98 (2006) 279-284.

Google Scholar

[29] P. Prepelita, R. Medianu, B. Sbarcea, F. Garoi, M. Filipescu, Applied Science 256 (2010) 1807-1811.

DOI: 10.1016/j.apsusc.2009.10.011

Google Scholar

[30] Z. Bi. Ju, L. Jian-She, Z. Lei, J. Qing, Chin. Phy. Lett. 28 (2011) 016801.

Google Scholar

[31] A. Arora, Anil Arora, P. J. George, V. K. Dwivedi, V. Gupta, Sensors and Transducers Journal 117 (2010) 92-98 .

Google Scholar

[32] Asmiet Ramizy, Z. Hassan, Khalid Omar, MBE. Journal of Nanopartical Research 13 (2011) 7139-7148.

Google Scholar

[33] S. Cimitan, S. Albonetti, L. Forni, F. Peri, D. Lazzari, Journal of Colloid and Interface Science 329 (2009) 73-80 .

DOI: 10.1016/j.jcis.2008.09.060

Google Scholar

[34] S. Vijayalakshmi, S. Venkataraj, R. Jayavel, J. Phys. D: Appl. Phys. 41 (2008) 245403.

Google Scholar

[35] Saad F. Oboudi, Nadir F. Habubi, Ghuson H. Mohamed, Sami S. Chiad, International Letters of Chemistry, Physics and Astronomy 8(1) (2013) 78-86. ( Received 02 June 2013; accepted 06 June 2013 )

DOI: 10.56431/p-3o6piq

Google Scholar