Activated Carbon Loaded N, S Co-Doped TiO2 Nanomaterial and its Dye Wastewater Treatment

Article Preview

Abstract:

Activated carbon (AC) loaded nitrogen and sulfur (N, S) co-doped TiO2 nanomaterial (AC-N-S-TiO2) was prepared by precipitation method. AC-N-S-TiO2 material was characterized by Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Fourier Transform - Infrared (FT-IR), Photoluminescence (PL) and atomic force microscopy (AFM) analysis. Photodegradation and decolorization of Malachite green (MAG) and Methyl green (MEG) by using TiO2, N-S-TiO2 and AC-N-S-TiO2 under UV-light irradiation has been carried out. The photocatalytic activity of the AC-N-S-TiO2 was higher than that of the undoped and N, S-doped TiO2, The hydroxyl radical analysis - Fluorescence technique with coumarin has been discussed. The photodegradation of MEG was well described by analyzed to be pseudo-first order according to the Langmuir-Hinshelwood representation, the high quantum yield set up to be calculated, stability and reustability of nanomaterial. AC-N-S-TiO2 act as a promising photocatalyst for dye wastewater treatment under UV-light irradiation.

Info:

Pages:

147-164

Citation:

Online since:

February 2015

Export:

* - Corresponding Author

[1] Liu, R.; Wang, P.; Wang, X.; Yu, H.; Yu, J., J. Phys. Chem., C 2012, 116, 17721−17728.

Google Scholar

[2] Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.; Kamalakkannan, J.; Prabha, S.; Senthilvelan, S., Res. Bull. 2013, 48, 3707–3712.

DOI: 10.1016/j.materresbull.2013.05.121

Google Scholar

[3] Chandraboss, V.L.; Senthilvelan, S.; Natanapatham, N.; Murugavelu, M.; Loganathan, B.; Karthikeyan, B. J. Non-Cryst. Solids., 2013, 368, 23-28.

DOI: 10.1016/j.jnoncrysol.2013.02.027

Google Scholar

[4] Shon, H.K.; Phuntsho, S.; Vigneswaran, S, Desalin. Water Treat., 2008, 225, 235–248.

Google Scholar

[5] Rauf, M.A.; Meetani, M.A.; Hisaindee, S, Desalin. Water Treat., 2011, 276, 13-27.

Google Scholar

[6] Zhao, B.; G. Mele, G.; Pio, I.L.I.; L. Palmisano, L.; Vasapollo, G, J. Hazard. Mater., 2010, 176, 569-574.

Google Scholar

[7] Rengifo-Herrera, J.A. Pulgarin, C, Sol. Energy., 2010, 84, 37-43.

Google Scholar

[8] Dvoranova, D.; Brezova, V.; M. Mazur, M.; Malati, M.A, Appl. Catal. B: Environ., 2002, 37, 91–105.

Google Scholar

[9] Li, X.Y.; Yue, P.L.; Kutal, C, New J. Chem., 2003, 27, 1264–1269.

Google Scholar

[10] Khan, S.U.M.; Al-Shahry, M.; Ingler, W. B., 2002, 297, 2243–2245.

Google Scholar

[11] Yu, J.C.; Yu, J,; Ho, J.; Jiang, Z.; Zhang, L. Effects of F− doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 2002, 14, 3808–3816.

DOI: 10.1021/cm020027c

Google Scholar

[12] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001, 293, 269–271.

DOI: 10.1126/science.1061051

Google Scholar

[13] Yang, X.X.; Cao, C.D.; Erickson, L.; Hohn, K.; Maghirang, R.; Klabunde, K. Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation. Appl. Catal. B: Environ. 2009, 91, 657–662.

DOI: 10.1016/j.apcatb.2009.07.006

Google Scholar

[14] Ma, Y.F.; Zhang, J.L.; Tian, B.Z.; Chen, F.; Wang, L.Z. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. J. Hazard. Mater.2010, 182, 386–393.

DOI: 10.1016/j.jhazmat.2010.06.045

Google Scholar

[15] Kuo, Y.L.; Su, T.L.; Kung, F.C.; Wu, T.J. A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalysts. J. Hazard. Mater. 2011, 190, 938–944.

DOI: 10.1016/j.jhazmat.2011.04.031

Google Scholar

[16] Tian, H.; Ma, J.F.; Li, K.; Li, J.J. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of Methyl orange. Ceram. Int. 2009, 35, 1289–1292.

DOI: 10.1016/j.ceramint.2008.05.003

Google Scholar

[17] Chen, C.C; Lua, C.S.; Chung, Y.C.; Jan, J.L. UV light induced photodegradation of malachite green on TiO2 nanoparticles. J. Hazard. Mater. 2007, 141, 520–528.

DOI: 10.1016/j.jhazmat.2006.07.011

Google Scholar

[18] Ullmann's Encyclopedia of Industrial Chemistry. Part A27. Triarylmethane and Diarylmethane Dyes; 6th ed.; Wiley–VCH; New York, 2001.

Google Scholar

[19] R. Bonnett, G. Martinez, Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron 57 (2001) 9513-9547.

DOI: 10.1016/s0040-4020(01)00952-8

Google Scholar

[20] Cho, B.P.; Yang, T.; Blankenship, L.R.; Moody, J.D.; Churchwell, M.; Bebland, F.A.; Culp, S.A. Synthesis and characterization of N-demethylated metabolites of malachite green and leucomalachite green. Chem. Res. Toxicol. 2003, 16, 285-294.

DOI: 10.1021/tx0256679

Google Scholar

[21] Sobana, N.; Krishnakumar, B.; Swaminathan, M. Synergism and effect of operational parameters on solar photocatalytic degradation of an azo dye (Direct Yellow 4) using activated carbon-loaded zinc oxide. Mater. Sci. Semicond. Process. 2013, 16, 1046–1051.

DOI: 10.1016/j.mssp.2013.01.002

Google Scholar

[22] sun, J.H.; Wang, Y.K.; Sun, R.S.; Dong, S.V. Photodegradation of azo dye Conco Red from aqueous solution by the WO3-TiO2/ activated carbon (AC) photocatalyst under the UV irradiation. Mater. Chem. Phys. 2009, 155, 303-308.

DOI: 10.1016/j.matchemphys.2008.12.008

Google Scholar

[23] Kumar, J.; Bansal, A. Dual effect of photocatalysis and adsorption in degradation of Azorubine dye using nanosized TiO2 and activated carbon immobilized with different techniques. Int. J. Chem. Tech. Res. 2010, 1, 1537-1543.

Google Scholar

[24] Chen, C.; Yu, B.; Liu, J.; Dai, Q.; Zhu, Y. Investigation of ZnO films on Si(111) substrate grown by low energy O+ assisted pulse laser deposited technology. Mater. Lett. 2007, 61, 2961-2964.

DOI: 10.1016/j.matlet.2006.10.047

Google Scholar

[25] Rahmatollah Rahimi, Samaneh Safalou Moghaddam, Mahboubeh Rabbani, Comparison of photocatalysis degradation of 4-nitrophenol using N,S co-doped TiO2 nanoparticles synthesized by two different routes, J Sol-Gel Sci Technol (2012) 64:17–26

DOI: 10.1007/s10971-012-2823-6

Google Scholar

[26] Subash, B.; Krishnakumar, B.; Swaminathan, M.; Shanthi, M. Highly efficient, solar active and reusable photocatalyst: Zr-loaded Ag−ZnO for Reactive Red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir. 2013, 29, 939−949.

DOI: 10.1021/la303842c

Google Scholar

[27] Subramanian Balachandran, Natarajan Prakash, Kuppulingam Thirumalai, Manickavachagam Muruganandham, Mika Sillanpa and Meenakshisundaram Swaminathan, pubs.acs.dx.doi.org/10.1021/ie404287m | Ind. Eng. Chem. Res.

Google Scholar

[28] K. Ameta, P. Tak, D. Soni and suresh, C.ameta. Sci. Revs. Chem. Commun., 2014, 4, 38-45.

Google Scholar

[29] B. Subash, B. Krishnakumar, M. Swaminathan, and M. Shanthi, Langmuir., 2013, 29, 939−949.

Google Scholar

[30] Gusfiyesi, Admin Alif, Hermansyah Aziz, Syukri Arief and Edison Munaf. Res. J. Pharm. Biol. Chem. Sci., 2014, 5, 918.

Google Scholar

[31] Q. Xiang, Jiaguo Yu and Mietek Jaroniec, Phys. Chem. Chem. Phys., 2011, 13, 4853–4861 4853.

Google Scholar

[32] K.I. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto, Electrochem. Commun., 2000. 2, 207–10. ( Received 17 February 2015; accepted 23 February 2015 )

Google Scholar