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Abstract 

In this paper, we develop a deterministic model of typhoid that accounts for 
relapse of treatment. Mathematical analysis and numerical simulations are 
carried out to determine the transmission dynamics of typhoid in a community. 
The study aims to obtain insight on typhoid transmission dynamics and the role 
of carriers on the spread of the disease. Two equilibria exist: the disease-free 
equilibrium which is locally asymptotically stable if 10 <R  and unstable if 

10 >R  and the endemic state which is stable if .10 >R  The simulation 

results suggest sustained epidemic in the long time. Implications of these 
results point to evolution of carriers due to relapse of treatment. 

1. Introduction 

Typhoid is a major public health concern in tropical developing 
countries, especially in areas where access to clean water and other 
sanitation measures are limited [3, 13, 14]. Typhoid fever has complex 
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pathogenesis and manifests as an acute febrile disease, with relatively 
long incubation period that involves the transmigration of the 
microorganism through the Peyer’s patch, localized multiplication in the 
mesenteric lymph nodes, and subsequent spread to the liver and spleen 
prior to showing clinical symptoms [17]. It is a serious life-threatening 
infection characterised by false diagnosis due to similar signs and 
symptoms with malaria, which leads to improper controls and 
management of the disease. Despite extensive work on typhoid, not much 
is understood on the biology of the human-adapted bacterial pathogen 
and the complexity of the disease in endemic areas, especially in Africa 
[18]. 

Globally, the burden of the disease is estimated at 21 million cases 
and 222000 deaths annually with high rates reported among children 
and adolescents in South and Eastern Asia and uncertain in Africa [5, 10, 
16]. 

The symptoms are alleviated with antibiotic medications, however, a 
proportion of people treated for typhoid fever usually experience relapse, 
after a week of antibiotic treatment with symptoms which are milder and 
last for a shorter time compared with the original illness, requiring 
further treatment with antibiotics [2, 21]. Typhoid fever maybe prevented 
using vaccines, even though repeated mass vaccinations at intervals of 5 
years interval may reduce the disease incidence, small gains re-observed 
at each subsequent vaccination [4]. The dynamics of typhoid fever involve 
multiple interactions between the human host, pathogen and 
environment, contributing to both direct human-to-human and indirect 
environment-to-human transmission pathways [7, 15]. Typhoid fever 
produces long-term asymptomatic carriers which play a pivotal role in 
the disease transmission. 

In order to gain in-depth understanding of the complex dynamics of 
typhoid fever a number of studies have been conducted and published. 
Cvjetanovic et al. [4] constructed an epidemic model for typhoid fever in a 
stable population to study the transmission of infection at different levels 
of endemicity. Mushayabasa et al. [11] developed and analysed a 
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deterministic mathematical model for assessment of the impact of 
treatment and educational campaigns on controlling typhoid out-break in 
Zimbabwe. Date et al. [5] reviewed various vaccination strategies using 
current typhoid vaccines to assess the rationale, acceptability, 
effectiveness, impact and implementation lessons in order to inform 
future public health typhoid control strategies. Watson and Edmunds 
[20] carried out an intensive review of typhoid fever transmission 
dynamics models and economic evaluation of vaccination. Clinicians, 
microbiologists, modellers, and epidemiologists worldwide need full 
understanding and knowledge of typhoid fever to effectively control and 
manage the disease [18]. 

In this paper, we developed a deterministic model that accounts for 
relapse after treatment leading to evolution of carriers. The study aims to 
investigate the role of carriers evolving from treatment relapse in the 
transmission dynamics of the disease. 

2. The Mathematical Model 

We formulate a mathematical model that describes the dynamics of 
typhoid infection in a population. The model subdivides the population N 
into five (5) compartments depending on the epidemiological status of 
individuals. The compartments are susceptible S, infectives I, carriers 

,cI  treated infectives T, and the recovered R. We follow some existing 

studies [1, 11, 14] which assume direct (human-to-human) transmission 
of typhoid infection, even though typhoid is largely transmitted indirectly 
(human-to-environment or environment-to-human) [13, 14]. The study 
further assumes that upon treatment, a fraction of individuals relapse, 
become carriers (primary reservoir of the disease) and contribute to the 
transmission dynamics of the disease. We adopt the mathematical model 
of carriers by Kalajdzievska and Li [9] and incorporate treatment and 
allow for relapse into the carriers. We assume that recovered individuals 
are permanently immune. The parameter γ  denotes the recovery rate 

while τ  is the relapse rate. We further assume that carriers develop 
symptoms at a constant rate α  and proceed to symptomatic infectives. 
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The goal of the model is to investigate the effects of treatment in 
reducing the burden of typhoid infection and exacerbating the evolution 
of carriers. 

The susceptible population is replenished by recruitment or births at 
a per capita rate Λ  and is decreased due to infection at a rate BS and 
natural death at a constant rate ,µ  where B is the force of infection given 

by 

( )
N

TIIcB c 21 κκ ++β
=  

and the modification parameters sik  accounting for infectiousness of 

individuals satisfy .1 12 kk ≤≤  Thus, we assume that the rate of 

transmission of carriers is high as compared to other infectious 
individuals as they may be unaware of their disease status, followed by 
symptomatic infectives and consequently treated individuals. A 
susceptible individual may be infected via direct contact with infected, 
carriers or treated infectious individuals. A proportion ρ  of new infected 

individuals become carriers, while ρ−1  become symptomatic. Treated 

infective class gains individuals through treatment at constant rate σ  
and is decreased due to recovery at a constant rate γ  and disease-

induced deaths .2δ  We further assume that there is no natural recovery 

from typhoid infection. The above description leads to the following 
system of ordinary differential equations: 

,SBSS µ−−Λ=  

( ) ,1 IIBSI c δ+σ+µ−α+ρ=  

( ) ( ) ,1 cc ITBSI α+µ−+ρ−= τ  (1) 

( ) ,2 TIT δ++γ+µ−σ= τ  

,RTR µ−γ=  
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where RTIISN c ++++=  is the total population. Addition of all the 

equations of system (1), we obtain an equation governing changes in the 
total population 

.21 NTINdt
dN µ−Λ≤δ−δ−µ−Λ=   (2) 

Integrating the differential inequality (2), we obtain 

( ) .suplim
µ
Λ≤

∞→
tN

t
 (3) 

This demonstrates that the model can be studied in the feasible region 
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It is important to verify that all solutions of system (1) with non-negative 
initial conditions remain non-negative for all time t. 

3. Model Analysis 

3.1. Positivity of solutions 

In this subsection, we employ the technique by Friedman and Lungu 
([6]) to demonstrate that system (1) is positively invariant and well-
posed. We consider system (1) in matrix form 
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where ,, 211 α+µ=ωδ+σ+µ=ω  and ,23 δ++γ+µ=ω τ  which in 

compact form can be written as 
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( ) ( ),, iii
i xHxAtxfdt

dx
+==   (4) 

for ( ) ,,,, 21
′= nxxxx  where RxTxIxIxSx c ===== 54321 ,,,,  

and ( )′⋅  denotes transpose. Then system (1) can be written as 

( ),, txfdt
dxi =   (5) 

for ( ) .,,, 21
′= nxxxx  One can easily show that, system (3) satisfies 

the differential inequality 

,
1

++≥ ∑
=

iij

n

j
ii

i xCxAdt
dx  (6) 

for ,,,1 ni =  with 0≥ijC  and .0>  If ( ) ≥0ix  for ,,,1 ni =  

then ( ) ≥txi  for all .0≥t  

Proof 3.1. Assume without loss of generality that .0>  The case 
0=  is trivial through approximation of the system with a sequence 

,k =  which converges to zero as k  goes to infinity. Suppose now that 

( ) ,00 >≥ ix  for ni ≤≤1  does not hold. Then there exists 00 >t  such 

that ( ) 0>txi  for 00,1 ttni <≤≤≤  and ( ) 00 =txi  for at least one i, 

say .0ii =  Then ( )0ix  is a decreasing function such that ( ) .00
0 ≤tdt

dxi  

From the differential inequality ,00
0

1
++≥ ∑

=
iij

n

j
ii

i xCxAdt
dx

 which is a 

contradiction. Thus, if ( ) ≥0ix  for ,,,1 ni =  then ( ) 0≥txi  for all 
.0≥t  

3.2. Steady state solutions 

To obtain the equilibrium points of system (1), we set the right-hand 
side of the system to zero. The model analysis yields two equilibrium 
points, namely, the disease-free equilibrium given by 
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and the endemic equilibrium, 
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whose coordinates in terms of the force of infection are 
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3.3. The basic reproduction number, 0R  

We compute the effective reproduction number of the model using the 
next generation operator method by van den Driescche and Watmough 
[19]. The effective reproduction number is defined as the average number 
of secondary infections generated by primary cases under a specific 
control (treatment in this case) strategy. Distinguishing new infections 
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from other transitions in system (1), we obtain the two matrices F and V 
of generation of new infections and transition terms, respectively, 
expressed as 
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The effective reproduction number of the model is the dominant 

eigenvalue or spectral radius of the matrix ,1−FV  thus 

,2100 TII QQQR c β+β+β=   (8) 
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The threshold parameter 0R  can be re-written as ,0000 TII RRRR c ++=  

where 
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accounts for transmissions due to symptomatic infectives, 
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accounts for transmissions due to carriers, who may have acquired 
infection through direct transmission or treatment relapse transforming 
them into carriers; and the infections due to treated individuals is given 
by 

( ) .
2

02
0 δ++γ+µ

βσ
=

τ
cQR T

k  

3.4. Stability results 

Linearisation of system (1) about the disease-free equilibrium leads 
to the Jacobian matrix 
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The eigenvalues of 0EJ  are µ−=λ=λ 21  and the other three are 

determined from the characteristic equation 
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The quantity IR  denotes the reproduction number of the model for a 

population consisting entirely of infected individuals, IcR  represents the 

reproduction number of the model for a population consisting entirely of 
carrier individuals, while TR  is the reproduction number of the model 

for a population consisting entirely of treated individuals. The following 
theorem summaries the locally stability results: 

Theorem 3.2. The disease-free equilibrium (DFE) is locally 
asymptotically stable if 10 <R  and unstable otherwise. 

4. Numerical Simulations 

In this section, we carry out numerical simulations to illustrate 
analytical results of system (1), using data from published literature. We 
consider various treatment scenarios to investigate the effects of 
treatment in reducing the burden of the disease and evolution of carriers. 
The following parameter values extracted from literature shall be used 
for simulations (Table 1). 

Table 1. Typhoid model parameter and their interpretations 

Description Parameters Value Citation 

Recruitment rate Λ  31.3-55/100 [14] 

Per capital death rate µ  7.7-27.8/1000 [14] 

Disease-induced deaths 21, δδ  0.03-0.02-0.001 [1, 4, 14] 

Effective contacts c 10 [8] 

Rate of transmission β  0.000197/day [12] 

Progression to symptomatic state α  1/90 [4] 

Rate of recovery from treatment γ  0.002485/day  

New infections becoming carriers ρ  0.003-0.80 [4, 14] 

Rate of treatment σ  0.19-0.8 Varied 

Proportion of treated individuals τ  1/18 [4] 

Modification parameters 21, kk  1-1.2 Varied 
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From the assumption ,1 12 kk ≤≤  we consider a hypothetical 

scenario in which the transmission coefficients 1k  and ,2k  are related by 

a decreasing function of treatment T given by .1 21
Te ω−+= kk  We want 

to address the question: how does treatment influence the number of 
carriers and eventual outcome of the epidemic? We explore this 
behaviour through variation of treatment rate .σ  

Figures 1 and 2 show that increasing treatment has the effect of 
drastically increasing the prevalence of treated and untreated infectives 
to their maximum levels and steadily decreasing to their lowest levels 
before settling at endemic levels. These results demonstrate complexity 
in the dynamics of the disease transmission due to treatment effects. 
Therefore, there is need to understand the interaction between 
treatment, recovery, and relapse rates required to reduce the burden of 
the disease in order to develop effective intervention programs. The 
results show that exhibition of two peaks (Figure 3) occurring at early 
(maximum peak) and mid (minimum peak) stages of the epidemic. It is 
observed that high treatment rates lead to sustained endemic levels of 
carriers for a long time without reduction of the epidemic. 
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Varying σ 

 
     (a) 

  
     (b) 

Figure 1. We vary σ  and ,000247.0,001.0,100055:fix 21 =δ=δ=Λ  
,718.2,4.0,056.0,45.0,02.0,8.0,01.0,125.0 ==ω==α=µ=ρ=γ=β eτ

 .1,1 212
Te ω−+== kkk  
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Varying σ 

 
     (a) 

 
     (b) 

Figure 2. We vary σ  and ,000247.0,001.0,100055:fix 21 =δ=δ=Λ  
,718.2,4.0,056.0,45.0,02.0,8.0,01.0,125.0 ==ω==α=µ=ρ=γ=β eτ

.1,1 212
Te ω−+== kkk  
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Varying σ 

 

Figure 3. We vary σ  and ,000247.0,001.0,100055:fix 21 =δ=δ=Λ  
,718.2,4.0,056.0,45.0,02.0,8.0,01.0,125.0 ==ω==α=µ=ρ=γ=β eτ  

.1,1 212
Te ω−+== kkk  

5. Discussion 

In this study, we formulated and analyzed a deterministic typhoid 
infection model which incorporates treatment and assumes treatment 
relapse, leading to evolution of carriers. We established that the disease-
free equilibrium is locally asymptotically stable if 10 <R  and unstable if 

.10 >R  The endemic equilibrium exists and is stable if .10 >R  

Numerical simulations suggested that increasing treatment sustains the 
typhoid epidemic in the population. Implications of this result points to 
an added effect from carriers evolving from treatment relapse. The 
dependence of modification transmission parameter 2k  on treated 

population provides insight in the role of treatment in the transmission 
dynamics of the disease. Due to complexity of the model closed form 
solutions of the population density dependent transmission rate could not 
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be obtained. The study suggest development and implementation of 
preventive and treatment strategies which can reduce the burden of 
carriers in the population. Sensitive algorithms for case detection of 
infectives, especially carriers will play a critical role in reducing the 
burden of typhoid disease. 

Epidemic trends guide allocation of resources, targeted design of 
control strategies and surveillance or improved techniques for data 
collection. Even though, this study provides insight on the transmission 
dynamics of typhoid infection, we ignored some of the current challenges 
associated with pathogenesis interaction and emergence of multi-drug 
resistance. 

The dependence of infection parameters in the state variables seemed 
to suggest crucial dynamics appropriate to describe realistic behaviour of 
diseases. 

5.1. Conclusion 

We presented a deterministic model for typhoid transmission model 
with treatment. We determined conditions for existence and stability of 
equilibrium states characterized in terms of the effective reproduction 
number. The study showed that there is a disease-free equilibrium which 
is locally and globally asymptotically stable if 10 <R  and unstable if 

,10 >R  and the endemic equilibrium which is locally asymptotically 

stable if .10 >R  The study revealed further through simulations that 

the epidemic is sustained in the population. Implications of these results 
indicate that treatment sustain the carrier infectives who in turn 
sustains the epidemic in the population in the long run. Our paper is 
hypothetical and requires detailed study involving sensitivity analysis 
and parameter estimations to improve model predictions. 
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