Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, Volume 27, Issue 4, Pages 608–617
DOI: https://doi.org/10.20537/vm170410
(Mi vuu612)
 

This article is cited in 6 scientific papers (total in 6 papers)

MECHANICS

Modeling the flow of a multicomponent reactive gas using high accuracy algorithms

R. V. Zhalnina, E. E. Peskovaa, O. A. Stadnichenkob, V. F. Tishkinc

a Ogarev Mordovia State University, ul. Bol'shevistskaya, 68, Saransk, 430005, Russia
b Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 5, Novosibirsk, 630090, Russia
c Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl., 4, Moscow, 125047, Russia
References:
Abstract: The article considers a high-order accuracy algorithm for modelling the dynamics of multicomponent reactive gas taking into account the processes of diffusion, thermal conductivity and chemical reactions, based on WENO schemes. Computations for gas flow in a flowing reactor for thermal ethane pyrolysis with external heating of the reaction zone are carried out. The velocity of gas motion in explored flows is much less then sound velocity in gas mixture, which motivates using the Navier–Stokes equations in approximation of low Mach numbers for describing the processes under study. Computation of chemical kinetics equations is singled out as a separate step. The velocity of chemical reactions is defined by Arrhenius expressions. The ethane pyrolysis kinetic scheme is used for constructing the model, which is a branched radical mechanism. Computations of subsonic gas flow taking into account the processes of diffusion, chemical reactions and their thermal effects for different temperature of heating elements are carried out. Comparison with experimental data shows that $1.97\,\%$ conversion of ethane is reached at $648^{\circ}$C at the outflow of metal reactor. This result is close to $2.1\,\%$, which is obtained by experiment. Comparison of experimental data of thermal ethane pyrolysis with numerical experimental data shows a high level of reliability of the results obtained.
Keywords: Navier–Stokes equations, weno scheme, pyrolysis of ethane.
Received: 18.10.2017
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: 35Q30, 76N15
Language: Russian
Citation: R. V. Zhalnin, E. E. Peskova, O. A. Stadnichenko, V. F. Tishkin, “Modeling the flow of a multicomponent reactive gas using high accuracy algorithms”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:4 (2017), 608–617
Citation in format AMSBIB
\Bibitem{ZhaPesSta17}
\by R.~V.~Zhalnin, E.~E.~Peskova, O.~A.~Stadnichenko, V.~F.~Tishkin
\paper Modeling the flow of a multicomponent reactive gas using high accuracy algorithms
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2017
\vol 27
\issue 4
\pages 608--617
\mathnet{http://mi.mathnet.ru/vuu612}
\crossref{https://doi.org/10.20537/vm170410}
\elib{https://elibrary.ru/item.asp?id=32248462}
Linking options:
  • https://www.mathnet.ru/eng/vuu612
  • https://www.mathnet.ru/eng/vuu/v27/i4/p608
  • This publication is cited in the following articles:
    1. I. M. Gubaydullin, R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. F. Tishkin, “Numerical simulation of propane pyrolysis in a flow chemical reactor under the influence of constant external heating”, Math. Models Comput. Simul., 13:3 (2021), 437–444  mathnet  crossref  crossref
    2. R. V. Zhalnin, V. F. Masyagin, E. E. Peskova, V. F. Tishkin, “Modeling the flow of multicomponent reactive gas on unstructured grids”, Eng. Technol. Syst., 30:1 (2020), 162–175  crossref  isi
    3. V. N. Snytnikov, E. E. Peskova, O. P. Stoyanovskaya, “Model dvukhtemperaturnoi sredy gaz — tverdye nanochastitsy s lazernym pirolizom metana”, Matem. modelirovanie, 35:4 (2023), 24–50  mathnet  crossref  mathscinet
    4. E. E. Peskova, V. N. Snytnikov, “Chislennoe issledovanie konversii metanovykh smesei pod vozdeistviem lazernogo izlucheniya”, Zhurnal SVMO, 25:3 (2023), 159–173  mathnet  crossref
    5. E. E. Peskova, V. N. Snytnikov, R. V. Zhalnin, “Vychislitelnyi algoritm dlya izucheniya vnutrennikh laminarnykh potokov mnogokomponentnogo gaza s raznomasshtabnymi khimicheskimi protsessami”, Kompyuternye issledovaniya i modelirovanie, 15:5 (2023), 1169–1187  mathnet  crossref
    6. V. N. Snytnikov, E. E. Peskova, O. P. Stoyanovskaya, “Mathematical Model of a Two-Temperature Medium of Gas–Solid Nanoparticles with Laser Methane Pyrolysis”, Math Models Comput Simul, 15:5 (2023), 877  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :205
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024