Skip to main content
Log in

Experimental Optimization of Selective Hydrazine Detection in Flow Injection Analysis Using a Carbon Paste Electrode Modified with Copper Porphyrin Occluded into Zeolite Cavity

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A carbon paste electrode modified with copper porphyrin occluded into zeolite cavity was developed for sensing hydrazine in flow system. The sensor presented a high sensitivity and selectivity for hydrazine concentration in the flow system. The flow system was optimized by factorial design considering a two level, three factor factorial design (the factors were applied potential, sampling volume and flow rate). The sensitivity and analytical frequency were considered as the most important parameters for the system. The best condition for the system was sampling volume of 50 μl, applied potential of 270 mV vs. SCE and a flow rate of 1 ml min–1. In this optimized condition, the electrode can improve its stability, sensitivity and selectivity. The operational range was between 5 up to 60 m mol l–1, adjusted by the equation Y=1.9(±0.1)+0.20(±0.01)[hydrazine]–0.0014(±0.0001)[hydrazine]2, with a correlation coefficient of 0.9995 for n=8. The analytical frequency was about 70 determinations per hour and the system was stable for at least two months in continuous use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. V. A. Pamidi and J. Wang, Electroanalysis, 8, 244 (1996).

    Article  CAS  Google Scholar 

  2. W. Hou, H. Ji and E. Wang, Talanta, 39, 45 (1992).

    Article  CAS  Google Scholar 

  3. G. Y. Vanag and M. A. Matskanova, J. Anal. Chem., 12, 149 (1957).

    Google Scholar 

  4. M. Issa and R. M. Issa, Anal. Chim. Acta, 14, 578 (1956).

    Article  CAS  Google Scholar 

  5. J. Cihalik and K. Terebova, Chem. Listy, 50, 1768 (1956).

    CAS  Google Scholar 

  6. G. W. Watt and J. D. Chrisp, Anal. Chem., 24, 2006 (1952).

    Article  CAS  Google Scholar 

  7. P. R. Wood, Anal. Chem., 25, 1879 (1953).

    Article  CAS  Google Scholar 

  8. P. T. Kissinger and W. R. Heineman, J. Chem. Educ., 60, 702 (1983).

    Article  CAS  Google Scholar 

  9. G. A. Mabbott, J. Chem. Educ., 60, 697 (1983).

    Article  CAS  Google Scholar 

  10. T. J. Mafatle and T. Nyokong, J. Electroanal. Chem., 408, 213 (1996).

    Article  Google Scholar 

  11. J. Li and G. Calzaferri, J. Electroanal. Chem., 377, 163 (1994).

    Article  CAS  Google Scholar 

  12. A. Walcarius, L. Lamberts and E. G. Derouane, Electroanalysis, 7, 120 (1995).

    Article  CAS  Google Scholar 

  13. J. Wang and A. Walcarius, J. Electroanal. Chem., 407, 183 (1996).

    Article  Google Scholar 

  14. C. Bing and L. Kryger, Talanta, 43, 153 (1996).

    Article  CAS  Google Scholar 

  15. A. M. Tolbert and R. P. Baldwin, Anal. Lett., 22, 683 (1989).

    Article  CAS  Google Scholar 

  16. K. N. Thomsen and R. P. Baldwin, Anal. Chem., 61, 2594 (1989).

    Article  CAS  Google Scholar 

  17. J. Wang, T. Golden and R. Li, Anal. Chem., 60, 1642 (1988).

    Article  CAS  Google Scholar 

  18. W. Hou and E. Wang, Anal. Chim. Acta, 257, 275 (1992).

    Article  CAS  Google Scholar 

  19. S. V. Guerra, C. R. Xavier, L. T. Kubota and S. Nakagaki, Electroanalysis, 10, 111 (1998).

    Article  Google Scholar 

  20. M. Valcarcel and M. D. Luque de Castro, “Anallisis por Inyeccion en Flujo”, ed. Imprensa San Pablo, Cordoba, 1984.

    Google Scholar 

  21. B. Lu, M. R. Smyth, R. O’Kennedy, J. Moulds and T. Frame, Anal. Chim. Acta, 340, 175 (1998).

    Article  Google Scholar 

  22. A. J. Downard, J. B. Hart, K. J. Powell and S. Xu, Anal. Chim. Acta, 269, 41 (1992).

    Article  CAS  Google Scholar 

  23. J. Ruzicka and E. H. Hansen, “Flow Injection Analysis”, Wiley, New York, 1981.

    Google Scholar 

  24. T. A. H. M. Janse, P. F. A. Van der Wiel and G. Kateman, Anal. Chim. Acta, 155, 89 (1983).

    Article  CAS  Google Scholar 

  25. A. A. C. Matousek, J. L. Burguera, M. Burguera and C. Rivas, Talanta, 42, 701 (1995).

    Article  Google Scholar 

  26. G. Henrion, R. Henrion, R. Heleisch and B. Boeden, Anal. Chim. Acta, 268, 115 (1992).

    Article  CAS  Google Scholar 

  27. C. R. Xavier, S. Nakagaki, A. S. Mangrich and L. T. Kubota, Zeolite, in press.

  28. B. G. Milagres, L. T. Kubota, G. de Oliveira Neto and E. L. Reis, J. Flow Injection Anal., 12, 223 (1996).

    Google Scholar 

  29. B. Barros Neto, I. S. Scarminio and R. E. Bruns, “Planejamento e Otimizacao de Experimentos”, Editora Unicamp, Campinas, 1995.

    Google Scholar 

  30. G. E. P. Box, W. G. Hunter and J. S. Hunter, “Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building”, Wiley, New York, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, S.V., Kubota, L.T., Xavier, C.R. et al. Experimental Optimization of Selective Hydrazine Detection in Flow Injection Analysis Using a Carbon Paste Electrode Modified with Copper Porphyrin Occluded into Zeolite Cavity. ANAL. SCI. 15, 1231–1234 (1999). https://doi.org/10.2116/analsci.15.1231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.15.1231

Keywords

Navigation