Skip to main content
Log in

Electrochemical Determination of Nitrite Using a Gold Nanoparticles-modified Glassy Carbon Electrode Prepared by the Seed-mediated Growth Technique

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Seed-mediated growth of gold nanoparticles on glassy carbon (GC) surfaces was developed. The field emission scanning electron microscopy (FE-SEM) and electrochemical characterization confirmed the effective attachment of gold nanoparticles on GC surface with such a wet-chemical method. The as-prepared gold nanoparticles attached glassy carbon electrode (Au/GCE) presented excellent catalytic ability toward the oxidation of nitrite. Compared with bare GCE and planar gold electrode, the Au/GCE obviously decreased the overpotential of nitrite oxidation and improved the peak current. The catalytic current was found to be linearly proportional to the nitrite concentration in the range of 1 × 10-5 - 5 × 10-3 M, with a detection limit of 2.4 × 10-6 M. The Au/GCE was successfully applied to the electrochemical determination of nitrite in a real wastewater sample, showing excellent stability and anti-interference ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Lijinsky and S. S. Epstein, Nature, 1970, 225, 21.

    Article  CAS  Google Scholar 

  2. I. A. Wolf and A. E. Wasserman, Science, 1972, 177, 15.

    Article  Google Scholar 

  3. K. K. Choi and K. W. Fung, Analyst, 1980, 105, 241.

    Article  CAS  Google Scholar 

  4. G. M. Greenway, S. J. Haswell, and P. H. Petsul, Anal. Chim. Acta, 1999, 387, 1.

    Article  CAS  Google Scholar 

  5. M. I. H. Helaleh and T. Korenaga, J. Chromatogr., B, 2000, 744, 433.

    Article  CAS  Google Scholar 

  6. R. Guidelli, F. Pergolo, and G. Raspi, Anal. Chem., 1972, 44, 745.

    Article  CAS  Google Scholar 

  7. S. M. Silva, C. R. Alves, S. A. S. Machado, L. H. Mazo, and L. A. Avaca, Electroanalysis, 1996, 8, 1055.

    Article  Google Scholar 

  8. D. Pletcher and M. Bertotti, J. Braz. Chem. Soc., 1997, 8, 391.

    Article  Google Scholar 

  9. A. Y. Chamsi and A. G. Fogg, Analyst, 1988, 113, 1723.

    Article  CAS  Google Scholar 

  10. Z. H. Wen and T. F. Kang, Talanta, 2004, 62, 351.

    Article  CAS  Google Scholar 

  11. B. O. Agboola, K. I. Ozoemena, and T. Nyokong, Electrochim. Acta, 2006, 51, 6470.

    Article  CAS  Google Scholar 

  12. C. A. Caro, F. Bedioui, and J. H. Zagal, Electrochim. Acta, 2002, 47, 1489.

    Article  CAS  Google Scholar 

  13. A. Abbaspour and M. A. Mehrgardi, Talanta, 2005, 67, 579.

    Article  CAS  Google Scholar 

  14. M. H. Pournaghi-Azar and H. Dastangoo, J. Electroanal. Chem., 2004, 567, 211.

    Article  CAS  Google Scholar 

  15. H. Winnischofer, S. S. Lima, K. Araki, and H. E. Toma, Anal. Chim. Acta, 2003, 480, 97.

    Article  CAS  Google Scholar 

  16. J. R. C. Rocha, L. Angnes, M. Bertotti, K. Araki, and H. E. Toma, Anal. Chim. Acta, 2002, 452, 23.

    Article  Google Scholar 

  17. W. S. Cardoso and Y. Gushikem, J. Electroanal. Chem., 2005, 583, 300.

    Article  CAS  Google Scholar 

  18. Z. H. Dai, X. X. Xu, and H. X. Ju, Anal. Biochem., 2004, 332, 23.

    Article  CAS  Google Scholar 

  19. B. Strehlitz, B. Grundig, W. Schumacher, P. M. H. Kroneck, K. D. Vorlop, and H. Kotte, Anal. Chem., 1996, 68, 807.

    Article  CAS  Google Scholar 

  20. E. Katz, I. Willner, and J. Wang, Electroanalysis, 2004, 16, 19.

    Article  CAS  Google Scholar 

  21. S. Q. Wang, Y. M. Yin, and X. Q. Lin, Electrochem. Commun., 2004, 6, 259.

    Article  CAS  Google Scholar 

  22. C. J. Murphy and N. R. Japa, Adv. Mater., 2002, 14, 80.

    Article  CAS  Google Scholar 

  23. J. D. Zhang, M. Kambayashi, and M. Oyama, Electrochem. Commun., 2004, 6, 683.

    Article  CAS  Google Scholar 

  24. J. D. Zhang and M. Oyama, Electrochim. Acta, 2004, 50, 85.

    Article  CAS  Google Scholar 

  25. J. D. Zhang and M. Oyama, J. Electroanal. Chem., 2005, 577, 273.

    Article  CAS  Google Scholar 

  26. R. N. Goyal, M. Oyama, and A. Tyagi, Anal. Chim. Acta, 2007, 581, 32.

    Article  CAS  Google Scholar 

  27. J. D. Zhang, M. Kambayashi, and M. Oyama, Electroanalysis, 2005, 17, 408.

    Article  CAS  Google Scholar 

  28. D. L. Xi, “Handbook of Environmental Engineering: Volume of Environmental Monitoring (in Chinese)”, 1998, Higher Education Press, Beijing, 390.

    Google Scholar 

  29. T. Malinsky and Z. Taha, Nature, 1992, 358, 676.

    Article  Google Scholar 

  30. J. A. Harrison and Z. A. Khan, J. Electroanal. Chem., 1970, 28, 153.

    Google Scholar 

  31. R. Ojani, J. B. Rallf, and E. Zarei, Electrochim. Acta, 2006, 52, 753.

    Article  CAS  Google Scholar 

  32. S. Liu and H. Ju, Analyst, 2003, 128, 1420.

    Article  CAS  Google Scholar 

  33. V. Biagiotti, F. Valentini, E. Tamburri, M. L. Terranova, D. Moscone, and G. Palleschi, Sens. Actuators, B, 2007, 122, 236.

    Article  CAS  Google Scholar 

  34. X. H. Chen, C. M. Ruan, J. L. Kong, and J. Q. Deng, Anal. Chim. Acta, 1999, 382, 189.

    Article  CAS  Google Scholar 

  35. L. Y. Jiang, R. X. Wang, X. M. Li, L. P. Jiang, and G. H. Lu, Electrochem. Commun., 2005, 7, 597.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changzhu Yang or Jingdong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Yang, C., Zeng, W. et al. Electrochemical Determination of Nitrite Using a Gold Nanoparticles-modified Glassy Carbon Electrode Prepared by the Seed-mediated Growth Technique. ANAL. SCI. 23, 1421–1425 (2007). https://doi.org/10.2116/analsci.23.1421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.1421

Navigation