Skip to main content
Log in

Surface-enhanced Raman Scattering for Immunoassay Based on the Biocatalytic Production of Silver Nanoparticles

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We have reported on a novel enzyme immunoassay method for the detection of protein using biocatalytic silver nanoparticles as an enhanced substrate based on surface-enhanced Raman scattering (SERS). First, ascorbic acid was converted from ascorbic acid 2-phosphate by alkaline phosphatase immobilized on polystyrene microwells after a typical sandwich immunoreaction. Then Ag(I) ions were reduced to silver nanoparticles by the obtained ascorbic acid, which would result in a SERS signal when Raman dyes were absorbed. Using human IgG as a model protein, a wide linear dynamic range (1 to 100 ng ml−1) was reached with a low detection limit (0.02 ng ml−1) under the optimized assay conditions. Moreover, the production of an enhanced substrate was chosen as the signaling element in this method, which demonstrates a new way for SERS-based quantitative detection. These results suggest that the application of SERS enhanced by biocatalytic production of metal nanopaticles holds a promising potential for a sensitive immunoassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. V. Raman, Nature, 1928, 121, 501.

    Article  CAS  Google Scholar 

  2. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, Anal. Chem., 2005, 77, 338A.

  3. S. P. Mulvaney, M. D. Musick, C. D. Keating, and M. J. Natan, Langmuir, 2003, 19, 4784.

    Article  CAS  Google Scholar 

  4. D. J. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem., 1977, 84, 1.

    Article  CAS  Google Scholar 

  5. M. Moskovits, Rev. Mod. Phys., 1985, 57, 783.

    Article  CAS  Google Scholar 

  6. M. I. Stockman, Phys. Rev. E, 1997, 56, 6494.

    Article  CAS  Google Scholar 

  7. S. Nie and S. R. Emory, Science, 1997, 275, 1102.

    Article  CAS  PubMed  Google Scholar 

  8. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Chem. Rev., 1999, 99, 2957.

    Article  CAS  PubMed  Google Scholar 

  9. X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, and Y. Ozaki, Anal. Chem., 1997, 69, 1492.

    Article  CAS  Google Scholar 

  10. J. Ni, R. J. Lipert, B. Dawson, and M. D. Porter, Anal. Chem., 1999, 71, 4903.

    Article  CAS  PubMed  Google Scholar 

  11. D. S. Grubisha, R. J. Lipert, H. Y. Park, J. Driskell, and M. D. Porter, Anal. Chem., 2003, 75, 5936.

    Article  CAS  PubMed  Google Scholar 

  12. J. D. Driskell, K. M. Kwarta, R. J. Lipert, and M. D. Porter, Anal. Chem., 2005, 77, 6147.

    Article  CAS  PubMed  Google Scholar 

  13. Y. W. C. Cao, R. C. Jin, and C. A. Mirkin, Science, 2002, 297, 1536.

    Article  CAS  PubMed  Google Scholar 

  14. Y. W. C. Cao, R. C. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, J. Am. Chem. Soc., 2003, 125, 14676.

    Article  CAS  PubMed  Google Scholar 

  15. S. R. Emory and S. Nie, J. Phys. Chem. B, 1998, 102, 493.

    Article  CAS  Google Scholar 

  16. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Anal. Chem., 2005, 77, 326.

    Google Scholar 

  17. G. Braun, J. S. Lee, M. Dante, T. Q. Nguyen, M. Moskovits, and N. Reich, J. Am. Chem. Soc., 2007, 129, 6378.

    Article  CAS  PubMed  Google Scholar 

  18. V. F. Ximenes, A. Campa, W. J. Baader, and L. H. Catalani, Anal. Chim. Acta, 1999, 402, 99.

    Article  CAS  Google Scholar 

  19. C. M. Ruan, W. Wang, and B. H. Gu, Anal. Chem., 2006, 78, 3379.

    Article  CAS  PubMed  Google Scholar 

  20. J. Fenoll, G. Jourquin, and J. M. Kauffmann, Talanta, 2002, 56, 1021.

    Article  CAS  PubMed  Google Scholar 

  21. H. J. Kim and J. Kwak, J. Electroanal. Chem., 2005, 577, 243.

    Article  CAS  Google Scholar 

  22. C. M. Ruan and Y. Li, Talanta, 2001, 54, 1095.

    Article  CAS  PubMed  Google Scholar 

  23. S. Hwang, E. Kim, and J. Kwak, Anal. Chem., 2005, 77, 579.

    Article  CAS  PubMed  Google Scholar 

  24. L. Zhou, L. J. Ou, X. Chu, G. L. Shen, and R. Q. Yu, Anal. Chem., 2007, 79, 7492.

    Article  CAS  PubMed  Google Scholar 

  25. Z. P. Chen, Z. F. Peng, Y. Luo, B. Qu, J. H. Jiang, X. B. Zhang, G. L. Shen, and R. Q. Yu, Biosens. Bioelectron., 2007, 23, 485.

    Article  CAS  PubMed  Google Scholar 

  26. Z. P. Chen, Z. F. Peng, J. H. Jiang, X. B. Zhang, G. L. Shen, and R. Q. Yu, Sens. Actuators, B, in press.

  27. G. Frens, Nature, 1972, 241, 20.

    Google Scholar 

  28. P. C. Lee and D. Meisel, J. Phys. Chem., 1982, 86, 3391.

    Article  CAS  Google Scholar 

  29. N. Leopold and B. Lendl, J. Phys. Chem. B, 2003, 107, 5723.

    Article  CAS  Google Scholar 

  30. L. H. Lu, A. Kobayashi, K. Tawa, and Y. Ozaki, Chem. Mater, 2006, 18, 4894.

    Article  CAS  Google Scholar 

  31. G. W. Slawinski and F. P. Zamborini, Langmuir, 2007, 23, 10357.

    Article  CAS  PubMed  Google Scholar 

  32. P. Hildebrandt and M. Stockburger, J. Phys. Chem., 1984, 88, 5935.

    Article  CAS  Google Scholar 

  33. J. T. Zhang, X. L. Li, X. M. Sun, and Y. D. Li, J. Phys. Chem. B, 2005, 109, 12544.

    Article  CAS  PubMed  Google Scholar 

  34. Q. Zhou, G. Zhao, Y Chao, Y Li, Y Wu, and J. Zheng, J. Phys. Chem. C, 2007, 111, 1951.

    Article  CAS  Google Scholar 

  35. K. F. Domke, D. Zhang, and B. Pettinger, J. Am. Chem. Soc, 2006, 128, 14721.

    Article  CAS  PubMed  Google Scholar 

  36. K. Faulds, W. E. Smith, and D. Graham, Anal. Chem., 2004, 76, 412.

    Article  CAS  PubMed  Google Scholar 

  37. R. A. Evangelista, A. Pollak, and E. F. G. Templeton, Anal. Biochem., 1991, 197, 213.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruqin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Luo, Y., Liang, Y. et al. Surface-enhanced Raman Scattering for Immunoassay Based on the Biocatalytic Production of Silver Nanoparticles. ANAL. SCI. 25, 347–352 (2009). https://doi.org/10.2116/analsci.25.347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.25.347

Navigation