Skip to main content
Log in

An Amperometric Biosensor Based on Ascorbate Oxidase Immobilized in Poly(3,4-ethylenedioxythiophene)/Multi-Walled Carbon Nanotubes Composite Films for the Determination of l-Ascorbic Acid

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An amperometric l-ascorbic acid (AA) biosensor fabricated by immobilizing ascorbate oxidase (AO) in poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) composite films was reported for the first time. The entrapment of AO in PEDOT/MWCNTs composite films was performed during an electrochemical polymerization process. The influence of various experimental conditions was examined for determining the optimum analytical performance. The response of the biosensor towards AA under the optimized conditions is linear from 0.05 to 20 mM with a detection limit of 15 µM (SIN = 3). The biosensor shows a response time of 20 s and a sensitivity of 23.95 mA M−1 cm∡2. The apparent Michaelis-Menten constant (Km) and apparent activation energy (Ea) are 19.5 mM and 21 kJ mol−1, respectively. Moreover, the biosensor exhibits good anti-interferent ability, good reproducibility and remarkable storage stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lopes, J. Drinkine, C. Sacier, and Y. Glories, Anal. Chim. Acta, 2006, 555, 242.

    Article  CAS  Google Scholar 

  2. Y. Hernandez, M. G. Lobo, and M. Gonzalez, Food Chem., 2006, 96, 654.

    Article  CAS  Google Scholar 

  3. B. Tang, M. Wang, J. Du, Z. Ge, and J. Chen, J. Agric. Food Chem., 2003, 51, 4198.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Andreu, S. D. Marcos, J. R. Castillo, and J. Galben, Talanta, 2005, 65, 1045.

    Article  CAS  PubMed  Google Scholar 

  5. V. S. Ijeri, M. Algarra, and A. Martins, Electroanalysis, 2004, 16, 2082.

    Article  CAS  Google Scholar 

  6. Z. Bae, J. Park, S. Lee, and H. Chang, J. Electroanal. Chem., 1999, 468, 85.

    Article  CAS  Google Scholar 

  7. E. Turkusic, V. Milicevic, and H. Tahmiscija, Fresenius J. Anal. Chem., 2000, 368, 466.

    Article  CAS  PubMed  Google Scholar 

  8. X. Wang, H. Watanabe, and S. Uchiyama, Talanta, 2008, 74, 1681.

    Article  CAS  PubMed  Google Scholar 

  9. M. F. S. Teixeira, L. A. Ramos, O. Fatibello, and E. T. G. Cavalheiro, Anal. Bioanal. Chem., 2003, 376, 214.

    Article  CAS  PubMed  Google Scholar 

  10. S. V. Dzyadevych, V. N. Arkhypova, and A. P. Soldatkin, ITBM-RBM, 2008, 29, 17.

    Google Scholar 

  11. I. D. H. C. Marques, E. T. A. Marques, A. C. Silva, and W M. Ledingham, Appl. Biochem. Biotechnol., 1994, 44, 81.

    Article  CAS  Google Scholar 

  12. R. M. Lanniello and A. M. Yacynych, Anal. Chem., 1981, 53, 2090.

    Article  Google Scholar 

  13. Y M. Lvov, Z. Lu, J. B. Schenkman, X. Zu, and J. F. Rusling, J. Am. Chem. Soc, 1998, 120, 4073.

    Article  CAS  Google Scholar 

  14. M. F Suaud-Chagny and F. G. Gonon, Anal. Chem., 1986, 58, 412.

    Article  CAS  Google Scholar 

  15. T. Tatsuma, Y Okawa, and T. Watanabe, Anal. Chem., 1989, 61, 2352.

    Article  CAS  Google Scholar 

  16. M. Umana and J. Waller, Anal. Chem., 1986, 58, 2979.

    Article  CAS  Google Scholar 

  17. T. Ahuja, I. A. Mir, and D. Kumar, Biomaterials, 2007, 28, 791.

    Article  CAS  PubMed  Google Scholar 

  18. D. D. Borole, U. R. Kapadi, and P. P. Mahulikar, Monomers Polym., 2006, 9, 1.

    Article  CAS  Google Scholar 

  19. M. Gerard, A. Chaubey, and B. D. Malhotra, Biosens. Bioelectron., 2002, 17, 345.

    Article  CAS  PubMed  Google Scholar 

  20. P. R. Unwin and A. J. Bard, Anal. Chem., 1992, 64, 113.

    Article  CAS  Google Scholar 

  21. F R. R. Teles and L. P. Fonseca, Mat. Sci. Eng. C, 2008, 8, 1530.

    Article  Google Scholar 

  22. F Wang, M. S. Wilson, R. D. Rauh, and P. Schottland, Macromolecules, 2000, 33, 2083.

    Article  CAS  Google Scholar 

  23. L. B. Groenendaal, F Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 2000, 7, 12.

    Google Scholar 

  24. J. J. Davis, M. L. H. Green, H. A. O. Hill, Y C. Leung, P. J. Sadler, J. Sloan, A. V. Xavier, and S. C. Tsang, Inorg. Chim. Acta, 1998, 272, 261.

    Article  CAS  Google Scholar 

  25. M. Wang, F Zhao, Y Liu, and S. Dong, Biosens. Bioelectron., 2005, 21, 159.

    Article  CAS  PubMed  Google Scholar 

  26. S. G. Wang, Q. Zhang, R. L. Wang, and S. F. Yoon, Electrochem. Commun., 2003, 5, 800.

    Article  CAS  Google Scholar 

  27. X. L. Luo, A. J. Killard, A. Morrin, and M. R. Smyth, Anal. Chim. Acta, 2006, 575, 39.

    Article  CAS  PubMed  Google Scholar 

  28. M. M. Rahman, M. J. A. Shiddiky, M. A. Rahman, and Y B. Shim, Anal. Biochem., 2009, 384, 159.

    Article  CAS  PubMed  Google Scholar 

  29. D. Du, X. X. Ye, J. Cai, J. Liu, and A. Zhang, Biosens. Bioelectron., 2010, 25, 2503.

    Article  CAS  PubMed  Google Scholar 

  30. J. Y Chiu, C. M. Yu, M. J. Yen, and L. C. Chen, Biosens. Bioelectron., 2009, 24, 2015.

    Article  CAS  PubMed  Google Scholar 

  31. Y P. Wen, B. Y Lu, R. R. Yue, H. H. He, and J. K. Xu, Talanta, unpublished results.

  32. A. G. Marangoni, “Enzyme Kinetics: A Modern Approach”, 2003, John Wiley and Sons, New York, NJ.

    Google Scholar 

  33. T. Nakamura, N. Makino, and Y Ogura, J. Biochem., 1968, 64, 189.

    Article  CAS  PubMed  Google Scholar 

  34. M. Liu, Y. P. Wen, D. Li, H. H. He, and J. K. Xu, J. Appl. Polym. Sci., in press.

  35. J.-F Rochette, E. Sacher, M. Meunier, and J. H. T. Luong, Anal. Biochem., 2005, 336, 305.

    Article  CAS  PubMed  Google Scholar 

  36. G-E. Anthony, C. Lei, and R. H. Baughman, Nanotechnology, 2002, 13, 559.

    Article  Google Scholar 

  37. S. Cosnier, S. Szunerits, R. S. Marks, A. Novoa, L. Puech, and E. Perez, Talanta, 2001, 55, 889.

    Article  CAS  PubMed  Google Scholar 

  38. D. Shan, M. Zhu, and S. Xue, Biosens. Bioelectron., 2007, 22, 1612.

    Article  CAS  PubMed  Google Scholar 

  39. R. A. Kamin and G. S. Wilson, Anal. Chem., 1980, 52, 1198.

    Article  CAS  Google Scholar 

  40. N. Chauhan, T. Dahiya, Priyanka, and C. S. Pundir, J. Mol. Catal. B: Enzym., 2010, 67, 66.

    Article  CAS  Google Scholar 

  41. E. Akyilmaz and E. Dinckaya, Talanta, 1999, 50, 87.

    Article  CAS  PubMed  Google Scholar 

  42. X. Y. Wang, H. Watanabe, and S. Uchiyama, Talanta, 2008, 74, 1681.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingkun Xu or Haohua He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Wen, Y., Xu, J. et al. An Amperometric Biosensor Based on Ascorbate Oxidase Immobilized in Poly(3,4-ethylenedioxythiophene)/Multi-Walled Carbon Nanotubes Composite Films for the Determination of l-Ascorbic Acid. ANAL. SCI. 27, 477–482 (2011). https://doi.org/10.2116/analsci.27.477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.477

Navigation