Skip to main content
Log in

Modification of the Glass Surface Property in PDMS-Glass Hybrid Microfluidic Devices

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This paper presents a simple method to change the hydrophilic nature of the glass surface in a poly(dimethylsiloxane) (PDMS)-glass hybrid microfluidic device to hydrophobic by an extra-heating step during the fabrication process. Glass substrates bonded to a native or oxygen plasma-treated PDMS chip having microchambers (12.5 mm diameter, 110 μm height) were heated at 200°C for 3 h, and then the hydrophobicity of the glass surfaces on the substrate was evaluated by measuring the contact angle of water. By the extra-heating process, the glass surfaces became hydrophobic, and its contact angle was around 109°, which is nearly the same as native PDMS surfaces. To demonstrate the usefulness of this surface modification method, a PDMS-glass hybrid microfluidic device equipped with microcapillary vent structures for pneumatic manipulation of droplets was fabricated. The feasibility of the microcapillary vent structures on the device with the hydrophobic glass surfaces are confirmed in practical use through leakage tests of the vent structures and liquid handling for the electrophoretic separation of DNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Toepke and D. J. Beebe, Lab Chip, 2006, 6, 1484.

    Article  CAS  PubMed  Google Scholar 

  2. K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, and D. J. Beebe, Lab Chip, 2009, 9, 2132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, Lab Chip, 2007, 7, 987.

    Article  CAS  PubMed  Google Scholar 

  4. J. N. Lee, C. Park, and G. M. Whitesides, Anal. Chem., 2003, 75, 6544.

    Article  CAS  PubMed  Google Scholar 

  5. C. S. Effenhauser, G. J. Bruin, A. Paulus, and M. Ehrat, Anal. Chem., 1997, 69, 3451.

    Article  CAS  PubMed  Google Scholar 

  6. D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, Anal. Chem., 1998, 70, 4974.

    Article  CAS  PubMed  Google Scholar 

  7. T. Thorsen, S. J. Maerkl, and S. R. Quake, Science, 2002, 298, 580.

    Article  CAS  PubMed  Google Scholar 

  8. E. Leclerc, Y. Sakai, and T. Fujii, Biotechnol. Prog., 2004, 20, 750.

    Article  CAS  PubMed  Google Scholar 

  9. K. Hosokawa, T. Fujii, and I. Endo, Anal. Chem., 1999, 71, 4781.

    Article  CAS  Google Scholar 

  10. S. Kaneda, K. Ono, T. Fukuba, T. Nojima, T. Yamamoto, and T. Fujii, Electrophoresis, 2010, 31, 3719.

    Article  CAS  PubMed  Google Scholar 

  11. M. Yamada and M. Seki, Anal. Chem., 2004, 76, 895.

    Article  CAS  PubMed  Google Scholar 

  12. N. Y. Lee, M. Yamada, and M. Seki, Anal. Sci., 2004, 20, 483.

    Article  CAS  PubMed  Google Scholar 

  13. T. Ito, A. Inoue, K. Sato, K. Hosokawa, and M. Maeda, Anal. Chem., 2005, 77, 4759.

    Article  CAS  PubMed  Google Scholar 

  14. A. Arora, G. Simone, G. B. Salieb-Beugelaar, J. T. Kim, and A. Manz, Anal. Chem., 2010, 82, 4830.

    Article  CAS  PubMed  Google Scholar 

  15. S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, Nature, 2010, 466, 267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber, Science, 2010, 328, 1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Taniguchi, P. J. Choi, G. W. Li, H. Chen, M. Babu, J. Hearn, A. Emili, and X. S. Xie, Science, 2010, 329, 533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T. Danino, O. Mondragon-Palomino, L. Tsimring, and J. Hasty, Nature, 2010, 463, 326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Inoue, T. Ito, K. Makino, K. Hosokawa, and M. Maeda, Anal. Chem., 2007, 79, 2168.

    Article  CAS  PubMed  Google Scholar 

  20. T. Yamamoto, T. Fujii, and T. Nojima, Lab Chip, 2002, 2, 197.

    Article  CAS  PubMed  Google Scholar 

  21. T. Fukuba, Y. Aoki, N. Fukuzawa, T. Yamamoto, M. Kyo, and T. Fujii, Lab Chip, 2011, 11, 3508.

    Article  CAS  PubMed  Google Scholar 

  22. K. Hosokawa, T. Sato, Y. Sato and M. Maeda, Anal. Sci., 2010, 26, 1053.

    Article  CAS  PubMed  Google Scholar 

  23. S. L. Stott, C.-H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. A. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, G. K. Korir, F. P. Floyd, A. J. Gilman, J. B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L. V. Sequist, R. J. Lee, K. J. Isselbacher, S. Maheswaran, D. A. Haber, and M. Toner, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 18392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Mosadegh, H. Tavana, S. C. Lesher-Perez, and S. Takayama, Lab Chip, 2011, 11, 738.

    Article  CAS  PubMed  Google Scholar 

  25. V. Sunkara, D. K. Park, H. Hwang, R. Chantiwas, S. A. Soper, and Y. K. Cho, Lab Chip, 2011, 11, 962.

    Article  CAS  PubMed  Google Scholar 

  26. J. Kim, M. K. Chaudhury, and M. J. Owen, J. Colloid Interface Sci., 2000, 226, 231.

    Article  CAS  Google Scholar 

  27. J. Kim, M. K. Chaudhury, M. J. Owen, and T. Orbeck, J. Colloid Interface Sci., 2001, 244, 200.

    Article  CAS  Google Scholar 

  28. D. T. Eddington, J. P. Puccinelli, and D. J. Beebe, Sens. Actuators, B., 2006, 114, 170.

    Article  CAS  Google Scholar 

  29. Y. K. Kim, G. T. Kim, and J. S. Ha, Adv. Funct. Mater., 2007, 17, 2125.

    Article  CAS  Google Scholar 

  30. J. A. Wigenius, M. Hamedi, and O. Inganäs, Adv. Funct. Mater., 2008, 18, 2563.

    Article  CAS  Google Scholar 

  31. S. Kaneda, K. Ono, T. Fukuba, T. Nojima, T. Yamamoto, and T. Fujii, Int. J. Mol. Sci., 2011, 12, 4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M.-W. Yang and S.-Y. Lin, Colloids Surf., A, 2003, 220, 199.

    Article  CAS  Google Scholar 

  33. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, J. Microelectromech. Sys., 2000, 9, 76.

    Article  CAS  Google Scholar 

  34. H. Nagai, T. Irie, J. Takahashi, and S.-I. Wakida, Biosens. Bioelectron., 2007, 22, 1968.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Fujii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneda, S., Ono, K., Fukuba, T. et al. Modification of the Glass Surface Property in PDMS-Glass Hybrid Microfluidic Devices. ANAL. SCI. 28, 39–44 (2012). https://doi.org/10.2116/analsci.28.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.39

Navigation