Skip to main content

Advertisement

Log in

An Easy-to-Use Polystyrene Microchip-based Cell Culture System

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this study, we developed an integrated, low-cost microfluidic cell culture system that is easy to use. This system consists of a disposable polystyrene microchip, a polytetrafluoroethylene valve, an air bubble trap, and an indium tin oxide temperature controller. Valve pressure resistance was validated with a manometer to be 3 MPa. The trap protected against bubble contamination. The temperature controller enabled the culture of Macaca mulatta RF/6A 135 vascular endothelial cells, which are difficult to culture in glass microchips, without a CO2 incubator. We determined the optimal coating conditions for these cells and were able to achieve stable, confluent culture within 1 week. This practical system is suitable for low-cost screening and has potential applications as circulatory cell culture systems and research platforms in cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. Culbertson, T. G. Mickleburgh, S. A. Stewart-James, K. A. Sellens, and M. Pressnall, Anal. Chem., 2014, 86, 95.

    Article  CAS  PubMed  Google Scholar 

  2. M. L. Kovarik, D. M. Ornoff, A. T. Melvin, N. C. Dobes, Y. Wang, A. J. Dickinson, P. C. Gach, P. K. Shah, and N. L. Allbritton, Anal. Chem., 2013, 85, 451.

    Article  CAS  PubMed  Google Scholar 

  3. P. C. H. Li, “Microfluidics and Lab on a Chip for Biological Analysis and Discovery”, 2010, CRC Press, Boca Rotan.

    Book  Google Scholar 

  4. K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, Anal. Sci., 2003, 19, 15.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Kikutani, A. Hibara, K. Uchiyama, H. Hisamoto, and T. Kitamori, Lab Chip, 2002, 2, 193.

    Article  CAS  PubMed  Google Scholar 

  6. K. Sato, T. Odake, H. Kimura, T. Ooi, M. Nakao, and T. Kiamori, Anal. Chem., 2000, 72, 1144.

    Article  CAS  PubMed  Google Scholar 

  7. K. Sato, A. Egami, T. Odake, M. Tokeshi, M. Aihara, and T. Kitamori, J. Chromatogr. A, 2006, 1111, 228.

    Article  CAS  PubMed  Google Scholar 

  8. M. Goto, K. Sato, A. Murakami, M. Tokeshi, and T. Kitamori, Anal. Chem., 2005, 77, 2125.

    Article  CAS  PubMed  Google Scholar 

  9. K. M. Chrobak, D. R. Potter, and J. Tien, Microvasc. Res., 2006, 71, 185.

    Article  CAS  PubMed  Google Scholar 

  10. N. Sasaki, M. Shinjo, S. Hirakawa, M. Nishinaka, Y. Tanaka, K. Mawatari, T. Kitamori, and K. Sato, Electrophoresis, 2012, 33, 1729.

    Article  CAS  PubMed  Google Scholar 

  11. H. Tazawa, K. Sato, A. Tsutiya, M. Tokeshi, and R. Ohtani-Kaneko, Thromb. Res., 2015, 136, 328.

    Article  CAS  PubMed  Google Scholar 

  12. D. B. Cines, E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A. M. Schmidt, and D. M. Stern, Blood, 1998, 91, 3527.

    CAS  PubMed  Google Scholar 

  13. Y. Tanaka, Y. Kikukawa, K. Sato, Y. Sugii, and T. Kitamori, Anal. Sci., 2007, 23, 261.

    Article  PubMed  Google Scholar 

  14. Y. Imura, Y. Asano, K. Sato, and E. Yoshimura, Anal. Sci., 2009, 25, 1403.

    Article  CAS  PubMed  Google Scholar 

  15. L. Chau, M. Doran, and J. Cooper-White, Lab Chip, 2009, 9, 1897.

    Article  CAS  PubMed  Google Scholar 

  16. J. Shao, L. Wu, J. Wu, Y. Zheng, H. Zhao, Q. Jin, and J. Zhao, Lab Chip, 2009, 9, 3118.

    Article  CAS  PubMed  Google Scholar 

  17. T. Yamashita, Y. Tanaka, N. Idota, K. Sato, K. Mawatari, and T. Kitamori, Biomaterials, 2011, 32, 2456.

    Article  Google Scholar 

  18. A. D. van der Meer, A. A. Poot, M. H. G. Duits, J. Feijen, and I. Vermes, J. Biomed. Biotechnol., 2009, ID823148.

    Google Scholar 

  19. A. Kasai, N. Shintani, M. Oda, M. Kakuda, H. Hashimoto, T. Matsuda, S. Hinuma, and A. Baba, Biochem. Biophys. Res. Commun., 2004, 325, 395.

    Article  CAS  PubMed  Google Scholar 

  20. A. Hibara, M. Tokeshi, K. Uchiyama, H. Hisamoto, and T. Kitamori, Anal. Sci., 2001, 17, 89.

    Article  CAS  PubMed  Google Scholar 

  21. K. Jang, K. Sato, K. Igawa, U. Chung, and T. Kitamori, Anal. Bioanal. Chem., 2008, 390, 825.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Zhou, D. F. Kucik, A. J. Szalai, and J. C. Edberg, J. Visualized. Exp., 2014, 89, e51410.

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by the A-STEP Seeds Actualization Type program of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekatsu Tazawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tazawa, H., Sunaoshi, S., Tokeshi, M. et al. An Easy-to-Use Polystyrene Microchip-based Cell Culture System. ANAL. SCI. 32, 349–353 (2016). https://doi.org/10.2116/analsci.32.349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.349

Keywords

Navigation