Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 9, 2017

Equation of state and hyperfine parameters of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy

  • Zhu Mao EMAIL logo , Fan Wang , Jung-Fu Lin EMAIL logo , Suyu Fu , Jing Yang , Xiang Wu , Takuo Okuchi , Naotaka Tomioka , Vitali B. Prakapenka , Yuming Xiao and Paul Chow
From the journal American Mineralogist

Abstract

In this study, we performed synchrotron X-ray diffraction (XRD) and Mössbauer spectroscopy (SMS) measurements on two single-crystal bridgmanite samples [Mg0.94Fe0.042+Fe0.023+Al0.01Si0.99O3 (Bm6) and Mg0.89Fe0.0242+Fe0.0963+Al0.11Si0.89O3 (Al-Bm11)] to investigate the combined effect of Fe and Al on the hyperfine parameters, lattice parameters, and equation of state (EoS) of bridgmanite up to 130 GPa. Our SMS results show that Fe2+ and Fe3+ in Bm6 and Al-Bm11 are predominantly located in the large pseudo-dodecahedral sites (A-site) at lower-mantle pressures. The observed drastic increase in the hyperfine quadrupole splitting (QS) between 13 and 32 GPa can be associated with an enhanced local distortion of the A-site Fe2+ in Bm6. In contrast to Bm6, the enhanced lattice distortion and the presence of extremely high QS values of Fe2+ are not observed in Al-Bm11 at high pressures. Our results here support the notion that the occurrence of the extremely high QS component of approximately 4 mm/s in bridgmanite is due to the lattice distortion in the high-spin (HS) A-site Fe2+, instead of the occurrence of the intermediate-spin state. Both A-site Fe2+ and Fe3+ in Bm6 and Al-Bm11 remain in the HS state at lower-mantle pressures. Together with XRD results, we present the first experimental evidence that the enhanced lattice distortion of A-site Fe2+ does not cause any detectable variation in the EoS parameters, but is associated with anomalous variations in the bond length, tilting angle, and shear strain in the octahedra of Bm6. Analysis of the obtained EoS parameters of bridgmanite at lower-mantle pressures indicates that the substitution of Fe in bridgmanite will cause an enhanced density and a reduced bulk sound velocity (VΦ), whereas the Al and Fe substitution has a reduced effect on density and a negligible effect on VΦ. These experimental results provide new insight into the correlation between lattice, hyperfine, and EoS parameters of bridgmanite in the Earth’s lower mantle.

Acknowledgments

We acknowledge J. Liu for XRD measurements, C. McCammon for conventional Mössbauer measurements and data analysis, and H. Hsu for thoughtful discussion. Z. Mao acknowledges financial support from the National Natural Science Foundation of China (41522403), National Basic Research Program of China (2014CB845904), and the Fundamental Research Funds for the Central Universities in China (WK2080000052). J.F. Lin acknowledges support from the U.S. National Science Foundation (EAR-1446946). Portions of this work were performed at GeoSoilEnviroCARS, Advanced Photon Source, Argonne National Laboratory. GSECARS was supported by the National Science Foundation (EAR-0622171) and Department of Energy (DE-FG02-94ER14466) under Contract No. DE-AC02-06CH11357. Portions of this work were performed at HPCAT (Sector 16) of the Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES and NSF. A.P.S. is supported by DOE-BES, under Contract No. DE-AC02-06CH11357.

References

Akahama, Y., and Kawamura, H. (2006) Pressure calibration of diamond anvil Raman gauge to 310 GPa. Journal of Applied Physics, 100, 10.1063/1.2335683.Search in Google Scholar

Andrault, D., Bolfan-Casanova, N., and Guignot, N. (2001) Equation of state of lower mantle (Al,Fe)-MgSiO3 perovskite. Earth and Planetary Science Letters, 193, 501–508.10.1016/S0012-821X(01)00506-4Search in Google Scholar

Badro, J., Rueff, J.P., Vanko, G., Monaco, G., Fiquet, G., and Guyot, F. (2004) Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle. Science, 305, 383–386.10.1126/science.1098840Search in Google Scholar PubMed

Bengtson, A., Li, J., and Morgan, D. (2009) Mössbauer modeling to interpret the spin state of iron in (Mg,Fe)SiO3 perovskite. Geophysical Research Letters, 36, 10.1029/2009gl038340.Search in Google Scholar

Boffa Ballaran, T., Kurnosov, A., Glazyrin, K., Frost, D.J., Merlini, M., Hanfland, M., and Caracas, R. (2012) Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth and Planetary Science Letters, 333, 181–190.10.1016/j.epsl.2012.03.029Search in Google Scholar

Carpenter, M.A., Becerro, A.I., and Seifert, F. (2001) Strain analysis of phase transitions in (Ca,Sr)TiO3 perovskites. American Mineralogist, 86, 348–363.10.2138/am-2001-2-319Search in Google Scholar

Catalli, K., Shim, S.H., Prakapenka, V.B., Zhao, J.Y., Sturhahn, W., Chow, P., Xiao, Y.M., Liu, H.Z., Cynn, H., and Evans, W.J. (2010) Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties. Earth and Planetary Science Letters, 289, 68–75.10.1016/j.epsl.2009.10.029Search in Google Scholar

Catalli, K., Shim, S.H., Dera, P., Prakapenka, V.B., Zhao, J.Y., Sturhahn, W., Chow, P., Xiao, Y.M., Cynn, H., and Evans, W.J. (2011) Effects of the Fe3+ spin transition on the properties of aluminous perovskite-New insights for lower-mantle seismic heterogeneities. Earth and Planetary Science Letters, 310, 293–302.10.1016/j.epsl.2011.08.018Search in Google Scholar

Dewaele, A., Loubeyre, P., and Mezouar, M. (2004) Equations of state of six metals above 94 GPa. Physical Review B, 70, 10.1103/Physrevb.70.094112.Search in Google Scholar

Dorfman, S.M., Shieh, S.R., Meng, Y., Prakapenka, V.B., and Duffy, T.S. (2012) Synthesis and equation of state of perovskites in the (Mg,Fe)3Al2Si3O12 system to 172 GPa. Earth and Planetary Science Letters, 357–358, 194–202.10.1016/j.epsl.2012.09.024Search in Google Scholar

Dorfman, S.M., Meng, J., Prakapenka, V.B., and Duffy, T.S. (2013) Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite. Earth and Planetary Science Letters, 361, 249–257.10.1016/j.epsl.2012.10.033Search in Google Scholar

Dorfman, S.M., Badro, J., Rueff, J.P., Chow, P., Xiao, Y.M., and Gillet, P. (2015) Composition dependence of spin transition in (Mg,Fe)SiO3 bridgmanite. American Mineralogist, 100, 2246–2253.10.2138/am-2015-5190Search in Google Scholar

Dyar, M.D., Agresti, D.G., Schaefer, M.W., Grant, C.A., and Sklute, E.C. (2006) Mössbauer spectroscopy of earth and planetary materials. Annual Review of Earth and Planetary Sciences, 34, 83–125.10.1146/annurev.earth.34.031405.125049Search in Google Scholar

Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an interally consistent pressure scale. Proceedings of the National Academy of Sciences, 104, 9182–9186.10.1073/pnas.0609013104Search in Google Scholar

Fiquet, G., Dewaele, A., Andrault, D., Kunz, M., and Le Bihan, T. (2000) Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophysical Research Letters, 27, 21–24.10.1029/1999GL008397Search in Google Scholar

Frost, D.J., and Langenhorst, F. (2002) The effect of A2O3 on Fe-Mg partitioning between magnesiowüstite and magnesium silicate perovskite. Earth and Planetary Science Letters, 199, 227–241.10.1016/S0012-821X(02)00558-7Search in Google Scholar

Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Tr⊘nnes, R.G., and Rubie, D.C. (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428, 409–412.10.1038/nature02413Search in Google Scholar PubMed

Fujino, K., Nishio-Hamane, D., Seto, Y., Sata, N., Nagai, T., Shinmei, T., Irifune, T., Ishii, H., Hiraoka, N., Cai, Y.Q., and Tsuei, K.D. (2012) Spin transition of ferric iron in Al-bearing Mg-perovskite up to 200 GPa and its implication for the lower mantle. Earth and Planetary Science Letters, 317, 407–12.10.1016/j.epsl.2011.12.006Search in Google Scholar

Fujino, K., Nishio-Hamane, D., Nagai, T., Seto, Y., Kuwayama, Y., Whitaker, M., Ohfuji, H., Shinmei, T., and Irifune, T. (2014) Spin transition, substitution, and partitioning of iron in lower mantle minerals. Physics of the Earth and Planetary Interiors, 228, 186–191.10.1016/j.pepi.2013.12.008Search in Google Scholar

Fujishita, H., Yamada, T., Nakada, S., Okamoto, H., Shitara, S., Kato, M., and Koike, Y. (2010) Spontaneous strain in Ba0.6Ka0.4BiO3. Physica C-Superconductivity and Its Applications, 470, S770-S771, 10.1016/j.physc.2009.11.023.Search in Google Scholar

Glazyrin, K., Boffa Ballaran, T.B., Frost, D.J., McCammon, C., Kantor, A., Merlini, M., Hanfland, M., and Dubrovinsky, L. (2014) Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle. Earth and Planetary Science Letters, 393, 182–186.10.1016/j.epsl.2014.01.056Search in Google Scholar

Goncharov, A.F., Struzhkin, V.V., Montoya, J.A., Kharlamova, S., Kundargi, R., Siebert, J., Badro, J., Antonangeli, D., Ryerson, F.J., and Mao, W. (2010) Effect of composition, structure, and spin state on the thermal conductivity of the Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 180, 148–153.10.1016/j.pepi.2010.02.002Search in Google Scholar

Hemley, R.J., and Cohen, R.E. (1992) Silicate perovskite. Annual Review of Earth and Planetary Sciences, 20, 553–600.10.1146/annurev.ea.20.050192.003005Search in Google Scholar

Hirose, K. (2002) Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle. Journal of Geophysical Research-Solid Earth, 107, 10.1029/2001jb000597.Search in Google Scholar

Hsu, H., and Wentzcovitch, R.M. (2014) First-principles study of intermediate-spin ferrous iron in the Earth’s lower mantle. Physical Review B, 90, 10.1103/ Physrevb.90.195205.Search in Google Scholar

Hsu, H., Umemoto, K., Blaha, P., and Wentzcovitch, R.M. (2010) Spin states and hyperfine interactions of iron in (Mg,Fe)SiO3 perovskite under pressure. Earth and Planetary Science Letters, 294, 19–26.10.1016/j.epsl.2010.02.031Search in Google Scholar

Hsu, H., Blaha, P, Cococcioni, M., and Wentzcovitch, R.M. (2011) Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Physical Review Letters, 106, 10.1103/Physrevlett.106.118501.Search in Google Scholar

Hsu, H., Yu, Y.G., and Wentzcovitch, R.M. (2012) Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite. Earth and Planetary Science Letters, 359–360, 34–39.10.1016/j.epsl.2012.09.029Search in Google Scholar

Hummer, D.R., and Fei, Y.W. (2012) Synthesis and crystal chemistry of Fe3+-bearing (Mg,Fe3+)(Si,Fe3+)O3 perovskite. American Mineralogist, 97, 1915–1921.10.2138/am.2012.4144Search in Google Scholar

Inoue, T., Yabuki, T., and Yurimoto, H. (2012) Water contents of Al-bearing minerals in the mantle transition zone and the lower mantle. In T. Okuchi, Ed., Joint Symposium of Misasa-2012 and Geofluid-2, p. P21–02. ISEI, Misasa, Tottori, Japan.Search in Google Scholar

Irifune, T., Koizumi, T., and Ando, J-I. (1996) An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Physics of the Earth and Planetary Interiors, 96, 147–157.10.1016/0031-9201(96)03147-0Search in Google Scholar

Irifune, T., Shinmei, T., McCammon, C.A., Miyajima, N., Rubie, D.C., and Frost, D.J. (2010) Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 327, 193–195.10.1126/science.1181443Search in Google Scholar PubMed

Jackson, J.M., Sturhahn, W., Shen, G.Y., Zhao, J.Y., Hu, M.Y., Errandonea, D., Bass, J.D., and Fei, Y.W. (2005) A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa. American Mineralogist, 90, 199–205.10.2138/am.2005.1633Search in Google Scholar

Jacobsen, S.D., Reichmann, H-J., Spetzler, H.A., Mackwell, S.J., Smyth, J.R., Angel, R.J., and McCammon, C.A. (2002) Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. Journal of Geophysical Research, 107, 10.1029/2001JB000490.Search in Google Scholar

Kupenko, I., McCammon, C., Sinmyo, R., Prescher, C., Chumakov, A.I., Kantor, A., Ruffer, R., and Dubrovinsky, L. (2014) Electronic spin state of Fe,Al-containing MgSiO3 perovskite at lower mantle conditions. Lithos, 189, 167–172, 10.1016/j.lithos.2013.10.022.Search in Google Scholar

Lauterbach, S., McCammon, C.A., van Aken, P., Langenhorst, F., and Seifert, F. (2000) Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component of the lower mantle. Contributions to Mineralogy and Petrology, 138, 17–26.10.1007/PL00007658Search in Google Scholar

Li, J., Struzhkin, V.V., Mao, H.K., Shu, J.F., Hemley, R.J., Fei, Y.W., Mysen, B., Dera, P., Prakapenka, V., and Shen, G.Y. (2004) Electronic spin state of iron in lower mantle perovskite. Proceedings of the National Academy of Sciences, 101, 14, 027–14, 030.10.1073/pnas.0405804101Search in Google Scholar PubMed PubMed Central

Li, J., Sturhahn, W., Jackson, J.M., Struzhkin, V.V., Lin, J.F., Zhao, J., Mao, H.K., and Shen, G. (2006) Pressure effect on the electronic structure of iron in (Mg,Fe)(Si,Al)O3 perovskite: a combined synchrotron Mössbauer and X-ray emission spectroscopy study up to 100 GPa. Physics and Chemistry of Minerals, 33, 575–585.10.1007/s00269-006-0105-ySearch in Google Scholar

Lin, J.F., Watson, H., Vanko, G., Alp, E.E., Prakapenka, V.B., Dera, P., Struzhkin, V. V., Kubo, A., Zhao, J.Y., McCammon, C., and Evans, W.J. (2008) Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nature Geoscience, 1, 688–691.10.1038/ngeo310Search in Google Scholar

Lin, J.F., Alp, E.E., Mao, Z., Inoue, T., McCammon, C., Xia, Y.M., Chow, P, and Zhao, J.Y. (2012) Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite. American Mineralogist, 97, 592–597.10.2138/am.2012.4000Search in Google Scholar

Lin, J.F., Speziale, S., Mao, Z., and Marquardt, H. (2013) Effects of the electronic spin transitions of iron in lower-mantle minerals: implications to deep-mantle geophysics and geochemistry. Review in Geophysics, 51, 2012RG000414.10.1002/rog.20010Search in Google Scholar

Lin, J.F., Mao, Z., Yang, J., Liu, J., Xiao, Y., Chow, P., and Okuchi, T. (2016) Highspin Fe2+ and Fe3+ in single-crystal aluminous bridgmanite in the lower mantle. Geophysical Research Letters, 43, 10.1002/2016GL069836.Search in Google Scholar

Lundin, S., Catalli, K., Santillan, J., Shim, S.H., Prakapenka, V.B., Kunz, M., and Meng, Y. (2008) Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Physics of the Earth and Planetary Interiors, 168, 97–102.10.1016/j.pepi.2008.05.002Search in Google Scholar

Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800-Kbar under quasi-hydrostatic conditions. Journal of Geophysical Research Solid Earth and Planets, 91, 4673–4676.10.1029/JB091iB05p04673Search in Google Scholar

Mao, H.K., Hemley, R.J., Fei, Y.W., Shu, J.F. Chen, J.C., Jephcoat, A.P., Wu, Y., and Bassett, W.A. (1991) Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3-perovskites to 30 GPa. Journal of Geophysical Research, 96, 8069–8097.10.1029/91JB00176Search in Google Scholar

Mao, Z., Lin, J.F., Scott, H.P., Watson, H.C., Prakapenka, V.B., Xiao, Y., Chow, P., and McCammon, C. (2011) Iron-rich perovskite in the Earth’s lower mantle. Earth and Planetary Science Letters, 309, 179–184.10.1016/j.epsl.2011.06.030Search in Google Scholar

Mao, Z., Lin, J.F., Yang, J., Wu, J., Watson, H.C., Xiao, Y., Chow, P., and Zhao, J. (2014) Spin and valence states of iron in Al-bearing silicate glass at high pressures studied by synchrotron Mössbauer and X-ray emission spectroscopy. American Mineralogist, 99, 415–423.10.2138/am.2014.4490Search in Google Scholar

Mao, Z., Lin, J.F., Yang, J., Inoue, T., and Prakapenka, V.B. (2015) Effects of the Fe3+ spin transition on the equation of state of bridgmanite. Geophysical Research Letters, 42, 4335–4342, 10.1002/2015GL064400.Search in Google Scholar

McCammon, C. (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387, 694–696.10.1038/42685Search in Google Scholar

McCammon, C., Kantor, I., Narygina, O., Rouquette, J., Ponkratz, U., Sergueev, I., Mezouar, M., Prakapenka, V., and Dubrovinsky, L. (2008) Stable intermediatespin ferrous iron in lower-mantle perovskite. Nature Geoscience, 1, 68–687.10.1038/ngeo309Search in Google Scholar

McCammon, C., Dubrovinsky, L., Narygina, O., Kantor, I., Wu, X., Glazyrin, K., Sergueev, I., and Chumakov, A.I. (2010) Low-spin Fe2+ in silicate perovskite and a possible layer at the base of the lower mantle. Physics of the Earth and Planetary Interiors, 180, 215–221.10.1016/j.pepi.2009.10.012Search in Google Scholar

McCammon, C., Glazyrin, K., Kantor, A., Kantor, I., Kupenko, I., Narygina, O., Potapkin, V., Prescher, C., Sinmyo, R., Chumakov, A., and others. (2013) Iron spin state in silicate perovskite at conditions of the Earth’s deep interior. High Pressure Research, 33, 663–672, 10.1080/08957959.2013.805217.Search in Google Scholar

Murakami, M., Ohishi, Y., Hirao, N., and Hirose, K. (2012) A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485, 90-U118, 10.1038/Nature11004.Search in Google Scholar PubMed

Narygina, O.V., Kantor, I.Y., McCammon, C.A., and Dubrovinsky, L.S. (2010) Electronic state of Fe2+ in (Mg,Fe)(Si,Al)O3 perovskite and (Mg,Fe)SiO3 majorite at pressures up to 81 GPa and temperatures up to 800 K. Physics and Chemistry of Minerals, 37, 407–415.10.1007/s00269-009-0342-ySearch in Google Scholar

Nishio-Hamane, D., and Yagi, T. (2009) Equations of state for postperovskite phases in the MgSiO3-FeSiO3-FeAlO3 system. Physics of the Earth and Planetary Interiors, 175, 145–150.10.1016/j.pepi.2009.03.006Search in Google Scholar

Nishio-Hamane, D., Seto, Y., Fujino, K., and Nagai, T. (2008) Effect of FeAlO3 incorporation into MgSiO3 on the bulk modulus of perovskite. Physics of the Earth and Planetary Interiors, 166, 219–225.10.1016/j.pepi.2008.01.002Search in Google Scholar

O’Keeffe, M., and Hyde, B.G. (1977) Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and C3Au (LU). Acta Crystallographica, B33, 3802–3813.10.1107/S0567740877012114Search in Google Scholar

Okuchi, T., Purevjav, N., Tomioka, N., Lin, J.F., Kuribayashi, T., Schoneveld, L., Hwang, H., Sakamoto, N., Kawasaki, N., and Yurimoto, H. (2015) Synthesis of large and homogeneous single crystals of water-bearing minerals by slow cooling at deep-mantle pressures. American Mineralogist, 100, 1483–1492.10.2138/am-2015-5237Search in Google Scholar

Ozaki, T., Kusunose, K., Yamaguchi, H., Kajiwara, K., and Chikaura, Y. (2011) Spontaneous strain of conductive strontium titanate Sr1-xLaxTiO3 measured by using X-ray topographic domain contrast. Phase Transitions, 84, 837–842.10.1080/01411594.2011.558297Search in Google Scholar

Potapkin, V., McCammon, C., Glazyrin, K., Kantor, A., Kupenko, I., Prescher, C., Sinmyo, R., Smirnov, G.V., Chumakov, A.I., Ruffer, R., and Dubrovinsky, L. (2013) Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle. Nature Communications, 4, 10.1038/Ncomms2436.Search in Google Scholar PubMed

Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal of Applied Crystallography, 45, 329–331.10.1107/S0021889812004979Search in Google Scholar

Ringwood, A.E. (1975) Composition and Petrology of the Earth’s Mantle, 618 p. McGraw-Hill, New York.Search in Google Scholar

Saikia, A., Boffa Ballaran, T.B., and Frost, D.J. (2009) The effect of Fe and Al substitution on the compressibility of MgSiO3-perovskite determined through single-crystal X-ray diffraction. Physics of the Earth and Planetary Interiors, 173, 153–161.10.1016/j.pepi.2008.11.006Search in Google Scholar

Shukla, G., Wu, Z.Q., Hsu, H., Floris, A., Cococcioni, M., and Wentzcovitch, R.M. (2015) Thermoelasticity of Fe2+-bearing bridgmanite. Geophysical Research Letters, 42, 1741–1749.10.1002/2014GL062888Search in Google Scholar

Stixrude, L., and Cohen, R.E. (1993) Stability of orthorhombic MgSiO3 perovskite in the Earth’s lower mantle. Nature, 364, 613–616.10.1038/364613a0Search in Google Scholar

Sturhahn, W. (2000) CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data. Hyperfine Interactions, 125, 149–172.10.1023/A:1012681503686Search in Google Scholar

Tange, Y., Kuwayama, Y., Irifune, T., Funakoshi, K., and Ohishi, Y. (2012) P-V-T equation of state of MgSiO3 perovskite based on the MgO pressure scale: A comprehensive reference for mineralogy of the lower mantle. Journal of Geophysical Research, 117, 10.1029/2011jb008988.Search in Google Scholar

Tsuchiya, T., and Wang, X. (2013) Ab initio investigation on the high-temperature thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. Journal of Geophysical Research, 118, 83–91.10.1029/2012JB009696Search in Google Scholar

Tsuchiya, T., Tsuchiya, J., Umemoto, K., and Wentzcovitch, R.A. (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth and Planetary Science Letters, 224, 241–248.10.1016/j.epsl.2004.05.017Search in Google Scholar

Vanpeteghem, C.B., Angle, R.J., Ross, N.L., Jacobsen, S.D., Dobson, D.P., Litasov, K.D., and Ohtani, E. (2006) Al, Fe substitution in the MgSiO3 perovskite structure: A single-crystal X-ray diffraction study. Physics of the Earth and Planetary Interiors, 155, 96–103.10.1016/j.pepi.2005.10.003Search in Google Scholar

Wang, X.L., Tsuchiya, T., and Hase, A. (2015) Computational support for a pyrolitic lower mantle containing ferric iron. Nature Geoscience, 8, 556–559.10.1038/ngeo2458Search in Google Scholar

Wolf, A.S., Jackson, J.M., Dera, P., and Prakapenka, V.B. (2015) The thermal equation of state of (Mg,Fe)SiO3 bridgmanite (perovskite) and implications for lower mantle structures. Journal of Geophysical Research-Solid Earth, 120, 7460–7489, 10.1002/2015JB012108.Search in Google Scholar

Zhao, Y.S., Weidner, D.J., Parise, J.B., and Cox, D.E. (1993) Critical phenomena and phase transition of perovskite data for NaMgF3 Perovskite. Part II. Physics of the Earth and Planetary Interiors, 76, 17–34.10.1016/0031-9201(93)90052-BSearch in Google Scholar

Received: 2016-3-16
Accepted: 2016-8-29
Published Online: 2017-2-9
Published in Print: 2017-2-1

© 2017 by Walter de Gruyter Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2138/am-2017-5770/html
Scroll to top button