Skip to main content
Log in

Poststroke Motor Dysfunction and Spasticity

Novel Pharmacological and Physical Treatment Strategies

  • Therapy In Practice
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Following stroke, approximately 90% of patients experience persistent neurological motor deficits that lead to disability and handicap. Both pharmacological and physical treatment strategies for motor rehabilitation may be considered. In terms of pharmacological treatment, drugs that may potentially promote motor recovery when added to a regimen of physical therapy include the stimulants amphetamine and methylphenidate, as well as levodopa and fluoxetine. Botulinum toxin A has proven effective and well tolerated in several placebo-controlled trials for the treatment of focal upper and lower limb spasticity, although it has not been shown to improve motor function. The focal injection of botulinum toxin A inhibits the release of acetylcholine into the synaptic cleft, resulting in a reversible paresis of the muscles relevant for the spastic deformity. Other drugs, such as benzodiazepines, antiepileptic drugs and antipsychotics, may have detrimental effects on motor function and should be avoided, if possible.

With respect to physical strategies, modern concepts of motor learning favour a task-specific repetitive approach that induces skill-acquisition relevant to the patient’s daily life. Constrained-induced movement therapy based on the concept of learned non-use, electromyography-triggered electrical stimulation of the wrist muscles, robot-assisted motor rehabilitation to increase therapy intensity and bilateral practice to facilitate the movement of the paretic extremity are examples in upper limb rehabilitation. Lower limb rehabilitation has been enriched by treadmill training with partial bodyweight support, enabling the practice of up to 1000 steps per session; automated gait rehabilitation to relieve the strenuous effort required of the therapist; and rhythmic auditory stimulation, applying individually adjusted music to improve walking speed and symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Williams GR, Jiang JG, Matchar DB, et al. Incidence and occurrence of total (first-ever and recurrent) stroke. Stroke 1999; 30: 2523–8

    Article  PubMed  CAS  Google Scholar 

  2. Nakayma H, Jorgensen HS, Raaschou HO, et al. Recovery of upper extremity function in stroke patients: the Copenhagen study. Arch Phys Med Rehabil 1994; 75: 852–7

    Article  Google Scholar 

  3. Jorgensen HS, Nakayma H, Raaschou HO, et al. Recovery of walking function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil 1995; 76: 27–32

    Article  PubMed  CAS  Google Scholar 

  4. Ernst E. A review of stroke rehabilitation and physiotherapy. Stroke 1990; 21: 1081–5

    Article  PubMed  CAS  Google Scholar 

  5. Feeney DM, Gonzales A, Law W. Amphetamine, haloperidol and experience interact to affect rate of recovery after motor cortex injury. Science 1982; 217: 855–7

    Article  PubMed  CAS  Google Scholar 

  6. Goldstein LB. Basic and clinical studies of pharmacologic effects on recovery from brain injury. J Neural Transplant Plat 1993; 4: 175–92

    Article  CAS  Google Scholar 

  7. Goldstein LB. Common drugs may influence motor recovery after stroke: the Sygen in Acute Stroke Study Investigators. Neurology 1995; 45: 865–71

    Article  PubMed  CAS  Google Scholar 

  8. Crisostomo EA, Duncan PW, Probts M, et al. Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann Neurol 1988; 23: 94–7

    Article  PubMed  CAS  Google Scholar 

  9. Walker-Batson D, Smith P, Curtis S, et al. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Stroke 1995; 26: 2254–9

    Article  PubMed  CAS  Google Scholar 

  10. Mazagri R, Shuaib A, McPherson M, et al. Amphetamine failed to improve motor function in acute stroke [abstract]. Can J Neurol Sci 1995; 22: 25

    Google Scholar 

  11. Reding M, Solomon B, Borucki S. Effect of dextroamphetamine on motor recovery after stroke [abstract]. Neurology 1995; 45: A222

    Google Scholar 

  12. Sonde L, Nordström M, Nilsson CG, et al. A double-blind placebo-controlled study of the effects of amphetamine and physiotherapy after stroke. Cerebrovasc Dis 2001; 12: 253–7

    Article  PubMed  CAS  Google Scholar 

  13. Treig T, Werner C, Sachse M, et al. No benefit from D-amphetamine when added to physiotherapy after stroke: a randomized, placebo-controlled study. Clin Rehabil 2003; 17: 590–9

    Article  PubMed  Google Scholar 

  14. Grade C, Redford B, Chrostowski J, et al. Methylphenidate in early poststroke recovery: a double-blind, placebo-controlled study. Arch Phys Med Rehabil 1998; 79: 1047–50

    Article  PubMed  CAS  Google Scholar 

  15. Scheidtmann K, Fries W, Muller F, et al. Effect of levodopa in combination with physiotherapy and functional motor recovery after stroke: a prospective randomised, double-blind study. Lancet 2001; 358: 787–90

    Article  PubMed  CAS  Google Scholar 

  16. Dam M, Tonin P, De Boni A, et al. Effects of fluoxetine and maprotiline on functional recovery in post stroke hemiplegia patients: undergoing rehabilitation therapy. Stroke 1996; 27: 1211–4

    Article  PubMed  CAS  Google Scholar 

  17. Pariente J, Loubinoux I, Carel C, et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol 2001; 50: 718–29

    Article  PubMed  CAS  Google Scholar 

  18. Simpson DM, Alexander DN, O’Brian CF, et al. Botulinum toxin type A in the treatment of upper extremity spasticity: a randomized, double-blind, placebo controlled trial. Neurology 1996; 46: 1306–10

    Article  PubMed  CAS  Google Scholar 

  19. Bakheit AM, Thilmann AF, Ward AB, et al. A randomized, double-blind, placebo-controlled, dose-ranging study to compare the efficacy and safety of three doses of botulinum toxin type A (Dysport) with placebo in upper limb spasticity after stroke. Stroke 2000; 31(10): 2402–6

    Article  PubMed  CAS  Google Scholar 

  20. Hesse S, Reiter F, Konrad M, et al. Botulinum toxin type A and short-term electrical stimulation in the treatment of upper limb flexor spasticity after stroke: a randomised, double-blind, placebo-controlled trial. Clin Rehabil 1998; 12: 381–8

    Article  PubMed  CAS  Google Scholar 

  21. Hughes R, Walker BC. Influence of nerve-ending activity and of drugs on the rate of paralysis of rat-diaphragm preparations by clostridium botulinum type toxin A. J Physiol 1962; 160: 221–33

    PubMed  CAS  Google Scholar 

  22. Hesse S, Jahnke MT, Luecke D, et al. Short-term electrical stimulation enhances the effectiveness of botulinum toxin in the treatment of lower limb spasticity in hemiparetic patients. Neurosci Lett 1995; 201: 37–40

    Article  PubMed  CAS  Google Scholar 

  23. Dykstra DD, Wieting J, McCuire J, et al. Maximizing extraction of botulinum toxin type A from vials. Arch Phys Med Rehabil 2002; 83: 1638–40

    Article  PubMed  Google Scholar 

  24. Jarrett L, Nandi P, Thompson AJ. Managing severe lower limb spasticity in multiple sclerosis: does intrathecal phenol have a role? J Neurol Neurosurg Psychiatry 2002; 73: 705–9

    Article  PubMed  CAS  Google Scholar 

  25. Meythaler JM, Guin-Renfroe S, Brunner R, et al. Intrathecal baclofen for spastic hypertonia from stroke. Stroke 2001; 32: 2099–109

    Article  PubMed  CAS  Google Scholar 

  26. Hesse S, Lücke D, Malezic M, et al. Botulinum toxin therapy for lower limb extensor spasticity. J Neurol Neurosurg Psychiatry 1994; 57: 1321–5

    Article  PubMed  CAS  Google Scholar 

  27. Dengler R, Neyer U, Wolfath K, et al. Local botulinum toxin in the treatment of spastic drop foot. J Neurol 1992; 239: 375–8

    PubMed  CAS  Google Scholar 

  28. Hesse S, Krajnik J, Luecke D, et al. Ankle muscle activity before and after botulinum toxin therapy for lower limb extensor spasticity in chronic hemiparetic patients. Stroke 1996; 27: 455–60

    Article  PubMed  CAS  Google Scholar 

  29. Burbaud P, Wiart L, Dubos JL, et al. A randomised, double blind, placebo controlled trial of botulinum toxin in the treatment of spastic foot in hemiparetic patients. J Neurol Neurosurg Psychiatry 1996; 61: 265–9

    Article  PubMed  CAS  Google Scholar 

  30. Decq P, Cuny E, Filipetti P, et al. Role of soleus muscle in spastic equinus foot [letter]. Lancet 1998; 352: 118

    Article  PubMed  CAS  Google Scholar 

  31. Reiter F, Danni M, Lagalla G, et al. Low-dose botulinum toxin with ankle tapping for the treatment of spastic equinovarus foot after stroke. Arch Phys Med Rehabil 1998; 79: 532–5

    Article  PubMed  CAS  Google Scholar 

  32. Nudo RJ, Wise BM, SiFuentes F, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996; 272: 1791–4

    Article  PubMed  CAS  Google Scholar 

  33. Carr J, Shepherd R. Neurological rehabilitation. Oxford: Butterworth & Heinemann, 1998

    Google Scholar 

  34. Winstein CJ, Gradner ER, McNeal DR, et al. Standing balance training: effects on balance and locomotion in hemiparetic adults. Arch Phys Med Rehabil 1989; 70: 755–62

    PubMed  CAS  Google Scholar 

  35. Carr JH, Shepherd RB. A motor relearning programme. London: William Heinemann, 1987: 1–25

    Google Scholar 

  36. Langhammer B, Stanghelle JK. Bobath or motor relearning programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: a randomized controlled study. Clin Rehabil 2000; 14: 361–9

    Article  PubMed  CAS  Google Scholar 

  37. Kozlowski DA, James DC, Schauert T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesion. J Neurosci 1996; 16: 4776–86

    PubMed  CAS  Google Scholar 

  38. Bütefisch C, Hummelsheim H, Denzler P, et al. Repetitive training of isolated movements improves the outcome of the centrally paretic hand. J Neurol Sci 1995; 130: 59–68

    Article  PubMed  Google Scholar 

  39. Feys HM, De Weerdt WJ, Selz BE, et al. Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial. Stroke 1998; 29: 785–92

    Article  PubMed  CAS  Google Scholar 

  40. Taub E, Miller NE, Novak TA, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 1993; 74: 347–54

    PubMed  CAS  Google Scholar 

  41. Taub E, Burgio L, Miller NE. An operant approach to overcoming learned non-use after CNS damage in monkeys and man: the role of shaping. J Exp Anal Behav 1994; 61: 281–93

    Article  PubMed  CAS  Google Scholar 

  42. Taub E, Morris DM. Constrained-induced movement therapy to enhance recovery after stroke. Current Artherosclerosis Reports 2001; 3: 279–86

    Article  CAS  Google Scholar 

  43. Liepert J, Bauder H, Wolfgang HR, et al. Treatment-induced cortical reorginization after stroke in humans. Stroke 2000; 31: 1210–6

    Article  PubMed  CAS  Google Scholar 

  44. Staines WR, McIllroy WE, Graham SJ, et al. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology 2001; 56: 401–4

    Article  PubMed  CAS  Google Scholar 

  45. Mudie MH, Matayas TA. Upper extremity retraining following stroke: effects of bilateral practice. J Neurol Rehabil 1996; 10: 167–84

    Google Scholar 

  46. Whitall J, McCombe S, Waller S, et al. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic patients. Stroke 2000; 31: 2390–8

    Article  PubMed  CAS  Google Scholar 

  47. Powell J, Pandyan D, Granat M, et al. Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke 1999; 30: 1384–9

    Article  PubMed  CAS  Google Scholar 

  48. Caraugh J, Light K, Kim S, et al. Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 2000; 31: 1360–4

    Article  Google Scholar 

  49. Hogan N, Krebs HI, Charnarong J, et al. Interactive robotics therapist [US patent no. 5466213]. Cambridge (MA): Massachusetts Institute of Technology, 1995

    Google Scholar 

  50. Volpe BT, Krebs HI, Hogan N, et al. A novel approach to stroke rehabilitation. Neurology 2000; 54: 1938–44

    Article  PubMed  CAS  Google Scholar 

  51. Lum PS, Burgar CG, Shor PC, et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 2002; 83: 952–9

    Article  PubMed  Google Scholar 

  52. Hesse S, Schulte-Tigges G, Konrad M, et al. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 2003; 84: 915–20

    Article  PubMed  Google Scholar 

  53. Muelbacher W, Richards C, Ziermann U, et al. Improving hand function in chronic stroke. Arch Neurol 2002; 59: 1278–82

    Article  Google Scholar 

  54. Hesse S, Bertelt C, Jahnke MT, et al. Treadmill training with partial body weight support as compared to physiotherapy in non-ambulatory hemiparetic patients. Stroke 1995; 26: 976–81

    Article  PubMed  CAS  Google Scholar 

  55. Hesse S, Konrad M, Uhlenbrock D. Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects. Arch Phys Med Rehabil 1999; 80: 421–7

    Article  PubMed  CAS  Google Scholar 

  56. Visintin M, Barbeau H, Korner-Bitensky N, et al. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998; 29: 1122–8

    Article  PubMed  CAS  Google Scholar 

  57. Kosak MC, Reding MJ. Comparison of partial body weight-supported treadmill gait training versus aggressive bracing assisted walking post stroke. Neurorehabil Neural Repair 2000; 14: 13–9

    Article  PubMed  CAS  Google Scholar 

  58. Nilsson L, Carlsson J, Danielsson A, et al. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil 2001; 15: 515–27

    Article  PubMed  CAS  Google Scholar 

  59. Da Cunha Filho IT, Lim PAC, Qureshy H, et al. A comparison of regular rehabilitation and regular rehabilitation with supported treadmill ambulation training for acute stroke patients. J Rehabil Res Dev 2001; 38: 87–97

    Google Scholar 

  60. Laufer Y, Dickstein R, Chefez Y, et al. The effect of treadmill training on the ambulation of stroke survivors in the early stages of rehabilitation: a randomised study. J Rehabil Res Dev 2001; 38: 69–78

    PubMed  CAS  Google Scholar 

  61. Pohl M, Mehrholz J, Ritschel C, et al. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke 2002; 33: 553–8

    Article  PubMed  Google Scholar 

  62. American College of Sports Medicine. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med Sci Sports Exerc 1990; 22: 265–74

    Google Scholar 

  63. Sullivan KJ, Knowlton BJ, Dobkin BH. Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil 2002; 83: 683–91

    Article  PubMed  Google Scholar 

  64. Hesse S, Uhlenbrock D, Werner C, et al. A mechanized gait trainer for restoring gait in non-ambulatory subjects. Arch Phys Med Rehabil 2000; 81: 1158–61

    Article  PubMed  CAS  Google Scholar 

  65. Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001; 39: 252–5

    Article  PubMed  CAS  Google Scholar 

  66. Werner C, von Frankenberg S, Treig T, et al. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomised cross-over study. Stroke 2002; 33: 111–8

    Article  Google Scholar 

  67. Liberson WT, Holmquist H, Scott D, et al. Functional electrotherapy: stimulation of peroneal nerve synchronized with swing phase of gait of hemiplegic patients. Arch Phys Med Rehabil 1961; 42: 101–5

    PubMed  CAS  Google Scholar 

  68. Taylor P, Burridge J, Dunkerely A. Clinical use of the Oddstock dropped foot stimulator: its effect on the speed and effort of walking. Arch Phys Med Rehabil 1999; 80: 1577–83

    Article  PubMed  CAS  Google Scholar 

  69. Thaut MH, McIntosh GC, Rice RR. Rhythmic facilitation of gait training in hemiparetic stroke patients. J Neurol Sci 1997; 151: 207–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Reha-Stim, the company that holds the patent of the electromechanical gait trainer and the computerised arm trainer Bi-Manu-Track, is owned by Dr Beate Brandl-Hesse, the spouse of the principal author of this review. No sources of funding were used to assist in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesse, S., Werner, C. Poststroke Motor Dysfunction and Spasticity. CNS Drugs 17, 1093–1107 (2003). https://doi.org/10.2165/00023210-200317150-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200317150-00004

Keywords

Navigation