Skip to main content
Log in

Tissue-Engineered Skin

Current Status in Wound Healing

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Tissue-engineered skin is a significant advance in the field of wound healing and was developed due to limitations associated with the use of autografts. These limitations include the creation of a donor site which is at risk of developing pain, scarring, infection and/or slow healing.

A number of products are commercially available and many others are in development. Cultured epidermal autografts can provide permanent coverage of large area from a skin biopsy. However, 3 weeks are needed for graft cultivation. Cultured epidermal allografts are available immediately and no biopsy is necessary. They can be cryopreserved and banked, but are not currently commercially available.

A nonliving allogeneic acellular dermal matrix with intact basement membrane complex (Alloderm®) is immunologically inert. It prepares the wound bed for grafting allowing improved cultured allograft ‘take’ and provides an intact basement membrane. A nonliving extracellular matrix of collagen and chondroitin-6-sulfate with silicone backing (Integra®) serves to generate neodermis.

A collagen and glycosaminoglycan dermal matrix inoculated with autologous fibroblasts and keratinocytes has been investigated but is not commercially available. It requires 3 to 4 weeks for cultivation. Dermagraft® consists of living allogeneic dermal fibroblasts grown on degradable scaffold. It has good resistance to tearing. An extracellular matrix generated by allogeneic human dermal fibroblasts (TransCyte™) serves as a matrix for neodermis generation.

Apligraf® is a living allogeneic bilayered construct containing keratinocytes, fibroblasts and bovine type I collagen. It can be used on an outpatient basis and avoids the need for a donor site wound. Another living skin equivalent, composite cultured skin (OrCel™), consists of allogeneic fibroblasts and keratinocytes seeded on opposite sides of bilayered matrix of bovine collagen. There are limited clinical data available for this product, but large clinical trials are ongoing. Limited data are also available for 2 types of dressing material derived from pigs: porcine small intestinal submucosa acellular collagen matrix (Oasis™) and an acellular xenogeneic collagen matrix (E-Z-Derm™). Both products have a long shelf life.

Other novel skin substitutes are being investigated. The potential risks and benefits of using tissue-engineered skin need to be further evaluated in clinical trials but it is obvious that they offer a new option for the treatment of wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pomahac B., Svensjo T., Yao F., et al. Tissue engineering of skin. Crit Rev Oral Biol Med 1998; 9 (3): 333–344

    Article  PubMed  CAS  Google Scholar 

  2. Eaglstein W.H., Iriondo M., Laszlo K. A composite skin substitute (graftskin) for surgical wounds: a clinical experience. Dermatol Surg 1995; 21 (10): 839–843

    Article  PubMed  CAS  Google Scholar 

  3. Falanga V. Commentary: advances in wound care. Are we there yet? WOUNDS 2000; 12 (3): 51–52

    Google Scholar 

  4. Boyce S.T. Skin substitutes from cultured cells and collagen-GAG polymers. Med Biol Eng Comput 1998; 36 (6): 791–800

    Article  PubMed  CAS  Google Scholar 

  5. Eaglstein W.H., Falanga V. Tissue engineering for skin: an update. J Am Acad Dermatol 1998; 39: 1007–1010

    Article  PubMed  CAS  Google Scholar 

  6. Rheinwald J., Green H. Serial cultivation of strains of human epidermal keratinocytes: formation of keratinizing colonies from single cells. Cell 1975; 6: 331–344

    Article  PubMed  CAS  Google Scholar 

  7. Green H., Kehinde O., Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A 1979; 76 (11): 5665–5668

    Article  PubMed  CAS  Google Scholar 

  8. O’Connor N.E., Mulliken J.B., Banks-Schlegel S., et al. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1981; I: 75–78

    Article  Google Scholar 

  9. Hefton J.M., Caldwell D., Biozes D.G., et al. Grafting of skin ulcers with cultured autologous epidermal cells. J Am Acad Dermatol 1986; 14: 399–405

    Article  PubMed  CAS  Google Scholar 

  10. Gallico G., O’Connor N., Compton C., et al. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 1984; 311: 448–451

    Article  PubMed  Google Scholar 

  11. Carter D., Lin A., Varghese M., et al. Treatment of junctional epidermolysis bullosa with epidermal autografts. J Am Acad Dermatol 1987; 17: 246–250

    Article  PubMed  CAS  Google Scholar 

  12. Gallico G.G., O’Connor N.E., Compton C.C., et al. Cultured epithelial autografts for giant congenital nevi. J Plast Reconstr Surg 1989; 84 (1): 1–9

    Article  Google Scholar 

  13. Plott R., Brysk M., Newton R. A surgical treatment for vitiligo: autologous cultured epithelial grafts. J Dermatol Surg Oncol 1989; 15: 1161–1166

    PubMed  CAS  Google Scholar 

  14. Premachandra D., Woodward B., Milton C., et al. Treatment of postoperative otorrhea by grafting of mastoid cavities with cultured autologous epidermal cells. Lancet 1990; I: 365–367

    Article  Google Scholar 

  15. Romangnoli G., De Luca M., Faranda F., et al. Treatment of posterior hypospadias by the autologous graft cultured urethral epithelium. N Engl J Med 1990; 323: 527–530

    Article  Google Scholar 

  16. Phillips T.J., Pachas W. Clinical trial of cultured autologous keratinocyte grafts in the treatment of long-standing pressure ulcers. WOUNDS 1994; 6 (4): 113–119

    Google Scholar 

  17. Pellegrini G., Traverso C., Franzi A., et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997; 349: 990–993

    Article  PubMed  CAS  Google Scholar 

  18. Hafemann B., Ensslen S., Erdmann C., et al. Use of collagen/elastin membrane for the tissue engineering of dermis. Burns 1999; 25: 373–384

    Article  PubMed  CAS  Google Scholar 

  19. Heck E., Bergstresser P., Baxter C. Composite skin grafts: frozen dermal allografts support the engraftment and expansion of autologous epidermis. J Trauma 1985; 25: 106–112

    Article  PubMed  CAS  Google Scholar 

  20. Cuono C., Langdon R., McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacements after burn injury. Lancet 1986; I: 1123–124

    Article  Google Scholar 

  21. Phillips T.J. Biologic skin substitutes. J Dermatol Surg Oncol 1993; 19 (8): 794–800

    PubMed  CAS  Google Scholar 

  22. Hefton J., Madden M., Finkelstein J., et al. Grafting of burn patients with allografts of cultured epidermal cells. Lancet 1983; II: 428–430

    Article  Google Scholar 

  23. Madden M., Finkelstein J., Staiano-Coco L. Grafting of cultured allogeneic epidermis on second and third degree wounds on 26 patients. J Trauma 1986; 26: 955–962

    Article  PubMed  CAS  Google Scholar 

  24. De Luca M., Albanese E., Bondanza S., et al. Multicenter experience in the treatment of burns with autologous and allogeneic cultured epithelium, fresh or preserved in a frozen state. Burns 1989; 15: 303–309

    Article  PubMed  Google Scholar 

  25. Leigh I.M., Purkis P.E., Navsaria H.A., et al. Treatment of chronic venous ulcers with sheets of cultured allogeneic keratinocytes. Br J Dermatol 1987; 117: 591–597

    Article  PubMed  CAS  Google Scholar 

  26. Phillips T.J., Gilchrest B.A. Cultured epidermal grafts in the treatment of leg ulcers. Adv Dermatol 1990; 5: 33–48

    PubMed  CAS  Google Scholar 

  27. Phillips T.J., Kehinde O., Green H., et al. Treatment of skin ulcers with cultured epidermal allografts. J Am Acad Dermatol 1989; 21 (2 Pt 1): 191–199

    Article  PubMed  CAS  Google Scholar 

  28. Duhra P., Blight A., Mountford E., et al. A randomized controlled trial of cultured keratinocyte allografts for chronic venous ulcers. J Dermatol Treat 1992; 3: 189–191

    Article  Google Scholar 

  29. Phillips T.J., Provan A., Colbert D., et al. A randomized single blind controlled study of cultured epidermal allografts in the treatment of split thickness skin graft donor sites. Arch Dermatol 1993; 129: 879–882

    Article  PubMed  CAS  Google Scholar 

  30. McGuire J., Birchall N., Cuono C., et al. Successful engraftment of allogeneic keratinocytes in recessive dystrophic epidermolysis bullosa. Clin Res 1987; 35: 720a

    Google Scholar 

  31. Bolivar-Flores J., Poumian E., Marsch-Moreno M., et al. Use of cultured human epidermal keratinocytes for allografting burns and conditions for temporary banking of the cultured allografts. Burns 1990; 16: 3–8

    Article  PubMed  CAS  Google Scholar 

  32. De Luca M., Albanese E., Cancedda R., et al. Treatment of leg ulcers with cryopreserved allogenic cultured epithelium. Arch Dermatol 1992; 128: 633–638

    Article  PubMed  Google Scholar 

  33. Teepe R.G., Roseeuw D.I., Hermans J., et al. Randomized trial comparing cryopreserved cultured epidermal allografts with hydrocolloid dressings in healing chronic venous ulcers. J Am Acad Dermatol 1993; 29 (6): 982–988

    Article  PubMed  CAS  Google Scholar 

  34. Arambula H., Sierra-Martinez E., Gonzalez-Aguirre N., et al. Frozen human epidermal allogeneic cultures promote rapid healing of facial dermabrasion wounds. Dermatol Surg 1999; 25: 708–712

    Article  PubMed  CAS  Google Scholar 

  35. Wainwright D., Malden M., Luterman A., et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J Burn Care Rehabil 1996; 17: 124–136

    Article  PubMed  CAS  Google Scholar 

  36. Achauer B.M., VanderKam V.M., Celikoz B., et al. Augmentation of facial soft-tissue defects with alloderm dermal graft. Ann Plast Surg 1998; 41: 503–507

    Article  PubMed  CAS  Google Scholar 

  37. Burke J., Yannas I., Quinby W., et al. Successful use of physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 1981; 194: 413–428

    Article  PubMed  CAS  Google Scholar 

  38. Heimbach D., Luterman A., Burke J., et al. Artificial dermis for major burns. A multi-center randomized clinical trial. Ann Surg 1988; 208 (3): 313–320

    Article  PubMed  CAS  Google Scholar 

  39. Boyce S.T., Kagan R.J., Meyer N.A., et al. The 1999 clinical research award. Cultured skin substitutes combined with integra artificial skin to replace native skin autograft and allograft for the closure of excised full-thickness burns. J Burn Care Rehabil 1999; 20 (6): 453–461

    Article  PubMed  CAS  Google Scholar 

  40. Boyce S.T., Christianson D.J., Hansbrough J.F. Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes. J Biomed Mater Res 1988; 22 (10): 939–957

    Article  PubMed  CAS  Google Scholar 

  41. Hansbrough J., Boyce S., Cooper M., et al. Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA 1989; 262: 2125–2130

    Article  PubMed  CAS  Google Scholar 

  42. Nanchahal J., Ward C.M. New grafts for old? A review of alternatives to autologous skin. Br J Plast Surg 1992; 45 (5): 354–363

    Article  PubMed  CAS  Google Scholar 

  43. Boyce S.T., Medrano E.E., Abdel-Malek Z., et al. Pigmentation and inhibition of wound contraction by cultured skin substitutes with adult melanocytes after transplantation to athymic mice. J Invest Dermatol 1993; 100 (4): 360–365

    Article  PubMed  CAS  Google Scholar 

  44. Cooper M., Hansbrough J., Spielvogel R., et al. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh. Biomaterials 1991; 12: 243–248

    Article  PubMed  CAS  Google Scholar 

  45. Pollak R., Edington H., Jensen J., et al. A human dermal replacement for the treatment of diabetic foot ulcers. WOUNDS 1997; 9: 175–183

    Google Scholar 

  46. Hansbrough J. Status of cultured skin replacement. WOUNDS 1995; 7 (4): 130–136

    Google Scholar 

  47. Purdue G.F., Hunt J.L., Still Jr J.M., et al. A multicenter clinical trial of a biosynthetic skin replacement, Dermagraft-TC, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 1997; 18 (1 Pt 1): 52–57

    Article  PubMed  CAS  Google Scholar 

  48. Bell E., Ehrlich H., Buttle D., et al. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 1981; 211: 1052–1054

    Article  PubMed  CAS  Google Scholar 

  49. Wilkins L., Watson S., Prosky S., et al. Development of a bilayered living skin construct for clinical applications. Biotechnol Bioeng 1994; 43: 747–756

    Article  PubMed  CAS  Google Scholar 

  50. Falanga V. How to use Apligraf to treat venous ulcers. Skin Aging 1999 Feb: 30–36

    Google Scholar 

  51. Falanga V., Margolis D., Alvarez O., et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group [see comments]. Arch Dermatol 1998; 134 (3): 293–300

    Article  PubMed  CAS  Google Scholar 

  52. Kirsner R., Falanga V., Fivenson D., et al. Clinical experience with a human skin equivalent for the treatment of venous leg ulcers: process and outcomes. WOUNDS 1999; 11 (6): 137–144

    Google Scholar 

  53. Eaglstein W.H., Alvarez O.M., Auletta M., et al. Acute excisional wounds treated with a tissue-engineered skin (Apligraf). Dermatol Surg 1999; 25 (3): 195–201

    Article  PubMed  CAS  Google Scholar 

  54. Muhart M., McFalls S., Kirsner R.S., et al. Behavior of tissue-engineered skin: a comparison of a living skin equivalent, autograft, and occlusive dressing in human donor sites [see comments]. Arch Dermatol 1999; 135 (8): 913–918

    Article  PubMed  CAS  Google Scholar 

  55. Falabella A., Schachner L., Valencia I., et al. The use of tissue engineered skin (Apligraf) to treat a newborn with epidermolysis bullosa. Arch Dermatol 1999; 135: 1219–1222

    Article  PubMed  CAS  Google Scholar 

  56. Falabella A.F., Valencia I.C., Eaglstein W.H., et al. Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds. Arch Dermatol 2000; 136 (10): 1225–1230

    Article  PubMed  CAS  Google Scholar 

  57. Morgan J., Yarmush M. Bioengineered skin substitutes. Sci Med 1997 Jul/Aug: 6–15

    Google Scholar 

  58. Eisenberg M., Llewelyn D. Surgical management of hands in children with recessive dystrophic epidermolysis bullosa: use of allogeneic composite cultured skin grafts. Br J Plast Surg 1998; 51 (8): 608–613

    Article  PubMed  CAS  Google Scholar 

  59. Brown-Etris M., Punchello M., Shields D. Final report on a study to evaluate porcine small intestinal submucosa as a covering for partial thickness wounds [abstract]. The Symposium on Advanced Wound Care; 2000 Apr 1–4; Dallas

  60. Limat A., Mauri D., Hunziker T. Successful treatment of chronic leg ulcers with epidermal equivalents generated from cultured autologous outer root sheath cells. J Invest Dermatol 1996; 107: 128–135

    Article  PubMed  CAS  Google Scholar 

  61. Black A.F., Berthod F., L’Heureux N., et al. In vitro reconstruction of a human capillary-like network in a tissue- engineered skin equivalent. FASEB J 1998; 12 (13): 1331–1340

    PubMed  CAS  Google Scholar 

  62. Schechner J., Nath A., Zheng L., et al. In vivo formation of complex microvessels lined by human endothelial cells in a immunodeficient mouse. Proc Natl Acad Sci U S A 2000; 97 (16): 9191–9196

    Article  PubMed  CAS  Google Scholar 

  63. Supp D.M., Bell S.M., Morgan J.R., et al. Genetic modification of cultured skin substitutes by transduction of human keratinocytes and fibroblasts with platelet-derived growth factor-A. Wound Repair Regen 2000; 8 (1): 26–35

    Article  PubMed  CAS  Google Scholar 

  64. Michel M., L’Heureux N., Pouliot R., et al. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim 1999; 35 (6): 318–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Anna Falabella and Dr William Eaglstein have received research grants from Novartis, Organogenesis, and Advanced Tissue Sciences.

Author information

Authors and Affiliations

Authors

Additional information

Use of tradenames is for product identification only and does not imply endorsement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bello, Y.M., Falabella, A.F. & Eaglstein, W.H. Tissue-Engineered Skin. Am J Clin Dermatol 2, 305–313 (2001). https://doi.org/10.2165/00128071-200102050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200102050-00005

Keywords

Navigation