Implementation of a Fourth-Order Compact Quasi-Elliptic Substrate Integrated Waveguide Filter in C-Band

Document Type : Research Paper

Authors

1 Shariati Technical and Vocational College, Tehran, Iran.

2 Faculty of Electrical and Computer Engineering (ECE), Semnan University,Semnan,Iran.

Abstract

Substrate Integrated Waveguide (SIW) technology by application of the planar construction process obtains a catchy means for integrating planar and nonplanar circuits. Further, it is hard to realize the negative coupling needed to create a compact quasi-elliptic bandpass filter based on a single-layered SIW structure. The presented work proposes a specific planar and negative coupling configuration that provides two transmission zeroes at 5.03 GHz and 6.26 GHz. This article presents a fourth-order quasi-elliptic filter. The proposed filter is also wide-band. This structure is implemented in SIW knowledge. The SIW filter has a central frequency of 5.5 GHz. The perfect bandwidth is 0.7 GHz. It is realized on a single-layer substrate from Rogers Ro4003. The Thickness of the substrate is considered as 0.508 mm. The measured outcomes of this filter, which show an excellent selectivity, and a low insertion loss of about 1.9 dB, agree suitably with simulation results. The designed filter's innovation provides these features: compact, low cost, wide-band, good selectivity, low insertion loss, and agreement between simulation and fabrication.

Keywords

Main Subjects


  1. Kiani N, Afsahi M. Design and fabrication of a compact SIW diplexer in C-band. Iranian J. Electr. Electron. Eng. 2019;15 (2):189–194.
  2. Kiani N, Tavakkol Hamedani F, Rezaei P. Implementation of a reconfigurable miniaturized graphene-based SIW antenna for THz applications. Micr. Na. 2022.
  3. Wu LS, Zhou XL, Wei QF, Yin W. An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR), IEEE Microw. Wireless Compon. Lett. 2009;19 (12): 777–779.
  4. Shen W, Yin WY, Sun XW. Compact substrate integrated waveguide transversal filter with microstrip dual-mode resonator. J. Electromagn. Waves. Appl. 2010;24 (14): 1887–1896.
  5. Zhu F, Hong W, Chen JX, Wu K. Wide stopband substrate integrated waveguide filter using corner cavities. Electron. Lett. 2013;49 (1): 50–52.
  6. Jia D, Feng Q, Xiang Q, Wu K. Multilayer substrate integrated waveguide (SIW) filters with higher-order mode suppression. IEEE Microw. Wireless Compon. Lett. 2016;26 (9): 678–680.
  7. Zhou K, Zhou CX, Wu W. Resonance characteristics of the substrate-integrated rectangular cavity and their applications to dual-band and wide-stopband bandpass filter design. IEEE Trans. Microw. Theory Techn. 2017;65 (5): 1511–1524.
  8. Kiani S, Rezaei P, Karami M, R.A. Sadeghzadeh. Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator. Electron. Lett. 2018; 54: 667–668.
  9. Simsek S, Rezaeieh SA. A design method for substrate integrated waveguide electromagnetic bandgap (SIW-EBG) filters. AEU Int. J. Electron. Commun. 2013;67:981–983.
  10. Moitra S, Bhowmik PS. Modeling and analysis of Substrate Integrated Waveguide (SIW) and half-mode SIW (HMSIW) band-pass filter using reactive longitudinal periodic structures. AEU Int. J. Electron. Commun. 2016;70:1593–1600.
  11. Aghayari H, Nourinia J, Ghobadi C, Mohammadi B. Realization of dielectric-loaded waveguide filter with substrate integrated waveguide technique based on the incorporation of two substrates with different relative permittivity. AEU Int. J. Electron. Commun.2018;86:17–24.
  12. Martínez J, Coves Á, Bronchalo E, San Blas ÁA, Bozzi M. Band-pass filters based on periodic structures in SIW technology. AEU Int. J. Electron. Commun. 2019;112:152942.
  13. Máximo-Gutiérrez C, Hinojosa J, Alvarez-Melcon A. Design of wide band-pass substrate integrated waveguide (SIW) filters based on stepped impedances. AEU Int. J. Electron. Commun.2019;100:1–8.
  14. Wang X, Zhang D, Liu Q, Deng H, Lv D. Tunable bandpass filter with a wide tuning range of center frequency and bandwidth based on circular SIW. AEU Int. J. Electron. Commun.2020;114:153002.
  15. Huang L, Wu W, Zhang X, Lu H, Zhou Y, Yuan N. A novel compact and high-performance bandpass filter based on SIW and CMRC techniques. AEU Int. J. Electron. Commun.2017;82:420–425.
  16. Parameswaran A, Raghavan APS. Miniaturizing SIW filters with slow-wave technique. AEU Int. J. Electron. Commun.2018;84:360–365.
  17. Aghayari H, Nourinia J, Ghobadi C. Incorporated substrate integrated waveguide filters in propagative and evanescent mode: realization and comparison. AEU Int. J. Electron. Commun.2018;91:150–159.
  18. Meiguni JS, Ghobadi Rad A. WLAN substrate integrated waveguide filter with novel negative coupling structure. J. Model. Sim. Electr. Electron. Eng. 2015;1 (2):15–18.
  19. Amn-e-Elahi A, Rezaei P. SIW corporate-feed network for circular polarization slot array antenna. Wireless Pers. Commun. 2020;111: 2129–2136.
  20. Meiguni JS, Pommerenke A. Theory and experiment of UWB archimedean conformal spiral antennas. IEEE Trans. Antennas Propag. 2019;67 (10): 6371–6377.
  21. Meiguni JS, Kamyab M, Hosseinbeig A. Theory and experiment of spherical aperture-coupled antennas. IEEE Trans. Antennas Propag. 2013;61 (5): 2397–2403.
  22. Wang B, Cappelli MA. A tunable microwave plasma photonic crystal filter. Appl. Physic. Lett. 2015; 107(17): 171107.
  23. Pal B, Mandal MK, Dwari S. Varactor tuned dual-band bandpass filter with independently tunable band positions. IEEE Microw. Wireless Compon. Lett. 2019; 29(4): 255–
  24. Zhu H, Abbosh A. Compact tunable bandpass filter with a wide tuning range of center frequency and bandwidth using coupled lines and short-ended stubs. IET Microw. Antennas Propag. 2016; 10(8): 863–
  25. Xiao JK, Su XB, Wang HX, Ma JG. Compact microstrip balanced bandpass filter with adjustable transmission zeros. Electron. Lett. 2019; 55(4): 212–
  26. CST GmbH, Germany, CST STUDIO SUITE Ver. 2015 – User’s Manual, Dec. 2015. cst.com.
  27. Cameron RJ. General coupling matrix synthesis methods for Chebyshev filtering functions. IEEE Trans. Microw. Theory Tech. 1999; 47 (4): 433–442.
  28. Cameron RJ. Advanced coupling matrix synthesis techniques for microwave filters. IEEE Trans. Microw. Theory Tech. 2003; 51 (1): 1–10.
  29. Hong JS. Lancaster MJ. Microstrip filter for RF/microwave applications. New York: Wiley, 2001: 235–272.