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Abstract—In this work, the boundary value problem of 

simply supported rectangular Kirchhoff plates subjected to 

applied transverse loads is solved by the method of finite 

Fourier sine transform. The finite Fourier sine transform 

method was adopted as the analytical research tool due to 

the Dirchlet boundary conditions of the plate problem. 

Application of the finite Fourier sine transform to the fourth 

order governing partial differential equation of the 

Kirchhoff plate problem and the associated boundary 

conditions simplified the problem to an algebraic problem in 

the transform domain. The solution is obtained in the plate 

domain by inversion. The problem was solved for general 

distributed load p(x, y), point load applied at an arbitrary 

point on the plate, uniformly distributed patch load over the 

plate region x0 x  x1, y0 y  y1, and uniformly distributed 

load over the entire plate. The finite Fourier sine transform 

solutions obtained in each case were found to be identical 

solutions obtained with the Navier’s double trigonometrical 

series method as presented in Timoshenko and Woinowsky-

Krieger. The finite Fourier sine transform method was found 

to yield exact solutions to the classical thin plate flexure 

problem for simply supported edges. 

Keywords— Finite Fourier sine transform method, 

Kirchhoff plate, Dirichlet boundary conditions, distributed 

transverse load, patch load, point load, Navier’s double 

trigonometric series method. 

 

I. INTRODUCTION 

Plates are three dimensional structural members with 

extensive applications in civil, mechanical, aeronautical, 

naval and geotechnical engineering used to carry external 

loads by the development of bending resistance about the 

two axes of the plate [1, 2, 3]. 

The term plate theory denotes an approximate theory used to 

determine the stress fields and deformation field in elastic 

bodies one dimension of which (the plate thickness, h) is 

small compared with the other dimensions (the width and 

length of a rectangular plate supported at the edges or the 

diameter of a circular plate) [4]. The approximations consist 

of the introduction of certain simplifying assumptions into 

the governing kinematic, stress strain and equilibrium 

equations of the mathematical theory of elasticity [3, 4, 5]. 

These simplifications yield results which do not differ 

significantly from those obtained from the exact equations 

for the range of definition of the problem. The 

simplifications used in various plate theories derive from the 

definition of a plate as a three dimensional structure with 

one small dimension; and also from the consequences of 

Bernoulli-Navier’s hypothesis for beams when extended to 

plates. 

In the classical Kirchhoff –Love’s plate theory, the influence 

of transverse shear strains is assumed to be negligible, and a 

simultaneous consideration of kinematics, stress-strain law 

and the differential equation of equilibrium for an 

infinitesimal plate element results in a fourth order partial 

differential equation as the governing equation of 

equilibrium [7]. Consequently, the number of boundary 

conditions appurtenant to the support conditions appears to 

be in disagreement with the order of the governing partial 

differential equation [3, 8]. This limits the validity of the 

expressions for the shearing forces to the open region of the 

plate middle surface and introduces Kirchhoff’s shearing 

forces for the boundary of the plate. Three actual boundary 

conditions at each edge of the plate have to be replaced by 

two approximate conditions transformed in the Kirchhoff 

sense [2, 4]. 

Despite the shortcomings of the classical Kirchhoff-Love 

plate theory, it is well documented that for the majority of 

engineering applications, the theory gives sufficiently 

accurate results. The limitations and imperfections of the 

classical Kirchhoff-Love plate theory have led to the 

development of other plate theories. Some of these are 

Reissner plate theory [9, 10]; Mindlin plate theory [11], 

Henky refined plate theory [12, 13], Shimpi refined plate 

theory [14], Higher Order Plate Deformation theory [2], 

Third Order plate theory [15], Leung’s Plate theory and 

Osadebe plate model [16]. Modified plate theories have also 

been used in plate bending analysis [17]. 

The plate problem in general is a boundary value problem 

which is a system of differential equations to be satisfied in 

the plate domain and the associated boundary conditions to 

be satisfied at the plate boundaries [18]. The plate problem 
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has been solved successfully in the technical literature using 

two basic approaches – classical methods – Navier’s double 

trigonometric series and Levy’s single trigonometric series 

methods, and Numerical or Approximate Methods – Finite 

Difference Method [17], Finite Element Method, Boundary 

Integral Method, Variational Methods [20, 21] (Ritz 

Variational method [22], Galerkin Variational Method), 

Integral transform methods (Laplace transforms, Fourier 

transforms and Hankel transforms) [23] and Perturbation 

methods. In this work, the finite Fourier sine transform 

method is applied to solve the boundary value problem of 

simply supported rectangular Kirchhoff plates under given 

transverse loads. 

 

II. METHODOLOGY 

The finite transforms follow from the theory of Fourier 

series [24, 25] 

The finite sine transform Sn of a function of x,f(x) is defined 

as  

0

2
( ( )) ( )sin

l

n

n x
S S f x f x dx

l l


   ;   (1) 

m = 1, 2, 3 …,      n = 1, 2, 3 … 

where 0 , ( ( ))nx l S S f x    is the finite Fourier sine 

transform of f(x) 

with its inverse sine transform as 

1

1

( ) ( ) sinn n

n

n x
S S f x S

l







    (2) 

where 
1S

 is the inverse finite sine transform 

The finite sine transform is commonly used with Dirichlet 

boundary conditions, that specify the value of f(x) at the 

domain boundaries;x = 0, and x = l. 

The Finite cosine transform Cn of a function of x,f(x), 

normally used with Neuman boundary conditions that 

specify the value of 
f

x




 at the domain boundaries,x = 0, and 

x = l is defined as  

0

2
( ( )) ( )cos

l

n

n x
C C f x f x dx

l l


   ,   (3) 

n = 1, 2, 3 … 

The inverse cosine transform, denoted by 
1,C

 is defined 

by: 

1 0

1

( ) ( ) cos
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n n

n

C n x
C C f x C

l



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
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These transforms reduce a partial differential equation PDE 

to an ordinary differential equation ODE. 

 

If f(x, y) is a function of two independent variables x and y, 

defined in a given region 0 xa, 0 yb, its double finite 

Fourier sine transform ( ( , ))sF f x y  is defined by [26, 27] 

 

0 0

( ( , )) ( , ) ( , ) sin sin

a b

s

m x n y
F f x y F m n f x y dxdy

a b

 
   

     …(5) 

The inverse double finite Fourier sine transform is given by 

the double series: 

1 4
( ( , )) ( , ) ( , )sin sin ,s

m n

m x n y
F f m n f x y F m n

ab a b

 
   

   
 



m, n = 1, 2, 3     …(6) 

where 
1( ( , ))sF f m n

 is the inverse double finite Fourier 

sine transform of ( ( , ))f m n  

 

III. APPLICATION OF THE FINITE FOURIER 

SINE TRANSFORM METHOD 

The governing partial differential equation to be solved is 

given by Kirchhoff plate equation: 

4 4 4

4 2 2 4

( , )
2

w w w p x y

Dx x y y

  
  

   
  (7) 

where p(x, y) is the transverse distributed load acting on the 

plate, D is the flexural rigidity of the plate material, 

3

2
,

12(1 )

Eh
D 

 
E = Young’s modulus of elasticity, h = 

plate thickness,   is the Poisson’s ratio, and w(x, y) is the 

transverse deflection of plate, x and y are the space variables 

in the plane of the plate, and0 xa, 0yb. 

The boundary conditions for simple supports at the plate 

edges: x = 0, a;  y = 0, b are w = 0 on x = 0, a,y = 0, b,   wxx = 

0 on x = 0,  a, wyy = 0 on y = 0, b 

where 

2

2
,xx

w
w

x





 and 

2

2yy

w
w

y





 

 

Transverse Distributed load p(x, y)  

For distributed transverse load p(x, y), taking the finite 

Fourier Sine transforms of both sides of Equation (7), we 

have Equation (8) 

4 4 4

4 2 2 4

0 0

2 sin sin

b a

m n

w w w
x y dxdy

x x y y
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0 0
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b a

m np x y x y dxdy
D
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where ,m n

m n

a b

 
     
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Using the linearity property of the finite Fourier Sine 

transform, and noting the finite Fourier Sine transform of 

4

4

w

x




 given by Equation (9) 
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since wxx|x=a = wxx|x=0 = 0 

where 

0

( , ) ( , ) sin sin

b a

m n

a

w m n w x y x y dxdy     (10) 

w(m, n) = finite Fourier Sine transform of the transverse 

deflection function w(x, y), we have Equation (11): 
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where pmn is the finite Fourier Sine transform of the 

transverse distributed load 

Hence,    
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By inversion, 
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This satisfies the boundary conditions 

 

Case of concentrated load 0( , )p x y P  at ,x y   

inside the plate domain 

The load p(x, y) is represented using Dirac delta functions as 

0( , ) ( ) ( )p x y P x y         (19) 

where P0 is a constant and ( ) ( )x y       are the Dirac 

delta functions,   and   are the coordinates of application 

of point load on the plate. 
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By inversion, 
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               …(26) 

0( , ) ( , , , )w x y P K x y n     (27) 

K = Kernel or Green function.This, satisfies the boundary 

conditions. 

The bending moments are found from the bending moment 

displacement relations. 

For point load P at the centre of the plate, 

/2, /2x a y b       the deflection, and loading 

moment value become 
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m = 1, 3, 5 …  n = 1, 3, 5 …  
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Uniformly distributed patch load over the plate region 

x0xx1     y0yy1 

The plate deflection due to a uniformly distributed patch 

load over the region x0xx1, y0yy1 is found by integration 

of the point load solution; as 

 

( , )w x y 

1 1

0 0

4 2
2 2

2 2

( , )sin sin sin sin
4

y x

m n y x

m n m x m y
p d d

a b a b

Dab m n

a b

 
   

   

  
 

 

  
 

             …(31) 

0
6 2

2 2

2 2

sin sin
16 mn

m n

m x n y
S

p a b

D m n
mn

a b

 
 


  

 
 

   (32) 

sin sin sin sin
2 2

mn

m m u n n v
S

a a b b

   
   (33) 

where, 0 1 1 0( ), ( )u x x v y y     

From the bending moment displacement equations, 
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           …(35) 

Uniformly Distributed load p0 over the entire plate 

The plate deflection for uniformly distributed load p0 on the 

entire plate domain is found by integrating the point load 

solution over the entire plate are as: 

 ( , )w x y 
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m = 1, 3, 5 …  n = 1, 3, 5 … 

From the bending moment-displacement equations, the 

bending moment distributions become 
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           …(39) 

m, n = 1, 3, 5, 7 … 

 

IV. RESULTS AND DISCUSSIONS 

The Finite Sine transform method has been applied to the 

boundary value problem of simply supported rectangular 

Kirchhoff plates under general distributed load p(x, y), point 
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load P at ( , )   uniformly distributed patch load over a 

given area of the plate and uniformly distributed load over 

the entire plate. The deflection functions computed are 

shown in each case as Equations(18), (26), (32) and (37). 

The deflection functions were found to be identical with the 

Navier’s double trigonometric series solution for the 

deflection in each case. The double series of infinite terms 

obtained for the deflection w(x, y) for point loads is a rapidly 

convergent series and the deflection at any point can be 

obtained with good accuracy by considering only the first 

few terms. For point load applied at the plate centre, the 

deflection was observed to be symmetrical about the plate 

axes of symmetry, and maximum deflection was found to 

occur at the plate centre. The series solutions obtained for 

both w(x, y), Mx and My (for point load) were found to 

diverge at the point of application of the point load. 

Variation of maximum deflection at the plate centre, 

with the plate aspect ratio are tabulated inTable 3 

For the case of uniformly distributed load on the entire plate, 

the displacement was found to be identical to the 

corresponding Navier’s double trigonometric series solution. 

The deflection was found to be a double series of infinite 

terms, symmetrical about the two axes of symmetry of the 

plate. Bending moment functions found from the moment 

displacement relations were similarly found to be doubly 

symmetrical about the plate axes. Maximum values of 

deflection and bending moments for various b/a values were 

found to occur at the plate centre and are tabulated as shown 

in Table 1. The convergence characteristics of the series of 

w, Mxx, Myy are shown in Table 2, which shows the 

deflections converge faster than the bending moments. 

Table.1: Deflection and Bending Moment coefficients for Simply Supported Rectangular Kirchhoff Plates under uniformly 

distributed loads 

b/a 

 

4

max

pa
w F

D
  

Timoshenko and 

Woinowsky-Krieger 

Present study 

(deflection 

coefficient) 

Mxx max 

Timoshenko 

and 

Woinowsky-

Krieger 

Mxx max 

Present 

study 

(moment 

coefficient) 

Myy max 

Timoshenko 

and 

Woinowsky-

Krieger 

Myy max 

Present 

study 

1.0 4.06  103 4.062  103 0.0479 0.047886 0.0479 0.047886 

1.1 4.85  103 4.85  103 0.0554 0.0554 0.0493 0.0493 

1.2 5.64  103 5.64  103 0.0627 0.0627 0.0501 0.0501 

1.3 6.83  103 6.83  103 0.0694 0.0694 0.0503 0.0503 

1.4 7.05  103 7.05  103 0.0755 0.0755 0.0502 0.0502 

1.5 7.72  103 7.724 103 0.0812 0.08116 0.0498 0.049843 

1.6 8.30  103 8.30  103 0.0862 0.0862 0.0492 0.0492 

1.7 8.83  103 8.83  103 0.0908 0.0908 0.0486 0.0486 

1.8 9.31  103 9.31  103 0.0948 0.0948 0.0479 0.0479 

1.9 9.74  103 9.74  103 0.0985 0.0985 0.0471 0.0471 

2 10.13  103 10.12866  103 0.1017 0.101683 0.0464 0.046350 

3 12.23  103 12.2328  103 0.1189 0.118861 0.0406 0.0406266 

4 12.82  103 12.81865  103 0.1235 0.12346 0.0384 0.038415 

5 12.97  103 12.97  103 0.1246 0.124625 0.0375 0.03745 

 13.02  103 13.0208  103 0.1250 0.1250 0.0375 0.0375 

 

Table.2: Convergence study for Deflection and Bending moments at the center of simply supported square Kirchhoff plates 

under uniform load 

No of terms wmax 

4
210

pa

D

  

Mxx max 

pa2 102 

Myy max 

pa2 102 

1 0.416 5.34 5.34 

2 0.405 4.69 4.69 

3 0.406 4.86 4.94 

4 0.406 4.81 4.90 

Exact 0.406 4.79 4.79 
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Table.3: Simply supported rectangular Kirchhoff plates under point load at the center 

b/a wmax 

Timoshenko and Woinowsky-Krieger 

wmax 

Present study 

1.0 0.01160 0.01160 

1.2 0.01353 0.01353 

1.4 0.01464 0.01464 

1.6 0.01570 0.01570 

1.8 0.01620 0.01620 

2 0.01651 0.01651 

 

V. CONCLUSIONS 

The double finite Fourier sine transform method has been 

used to derive analytic flexural solutions of simply 

supported rectangular Kirchhoff plates under general 

distributed load, point load at , ,   uniform patch load 

and uniform load on the entire plate. The analysis is 

performed without any assumption of the displacement 

trial (shape) function which illustrates the advantage of 

the method. The method is an efficient and accurate 

analytical tool for Kirchhoff plate bending analysis and 

can be extended to other boundary value problems of 

plates such as buckling and vibration. 
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