We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/17435889.2.4.459

Nanopore-based DNA analysis is a single-molecule technique with revolutionary potential. It promises to carry out a range of analyses, orders of magnitude faster than current methods, including length measurement, specific sequence detection, single-molecule dynamics and even de novo sequencing. The concept involves using an applied voltage to drive DNA molecules through a narrow pore that separates chambers of electrolyte solution. This voltage also drives a flow of electrolyte ions through the pore, measured as an electric current. When molecules pass through the pore, they block the flow of ions and, thus, their structure and length can be determined based on the degree and duration of the resulting current reductions. In this review, I explain the nanopore-based DNA analysis concept and briefly explore its historical foundations, before discussing and summarizing all experimental results reported to date. I conclude with a summary of the obstacles that must be overcome for it to realize its promised potential.

Bibliography

  • Marziali A, Akeson M: New DNA sequencing methods. Annu. Rev. Biomed. Eng.3,195–223 (2001).
  • Metzker ML: Emerging technologies in DNA sequencing. Genome Res.15,1767–1776 (2005).
  • Gabig-Ciminska M: Developing nucleic acid-based electrical detection systems. Microb. Cell Fact.5,9 (2006).
  • Deamer DW, Akeson M: Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechnol.18,147–151 (2000).
  • Deamer DW, Branton D: Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res.35,817–825 (2002).
  • Nakane JJ, Akeson M, Marziali A: Nanopore sensors for nucleic acid analysis. J. Phys. Condens. Matter15,R1365–R1393 (2003).
  • Rhee M, Burns MA: Nanopore sequencing technology: research trends and applications. Trends Biotechnol.24,580–586 (2006).
  • Dekker C: Solid-state nanopores. Nat. Nanotechnol.2,209–215 (2007).
  • Wanunu M, Meller A: Single molecule analysis of nucleic acids and DNA-protein interactions using nanopores. In: Laboratory Manual on Single Molecules. Ha T, Selvin P (Eds). Cold Spring Harbor Press, NY, USA (2007).
  • 10  Meller A: Dynamics of polynucleotide transport through nanometre-scale pores. J. Phys. Condens. Matter15,R581–R607 (2003).
  • 11  Bezrukov SM, Vodyanoy I, Parsegian VA: Counting polymers moving through a single-ion channel. Nature370,279–281 (1994).
  • 12  Movileanu L, Howorka S, Braha O, Bayley H: Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol.18,1091–1095 (2000).
  • 13  Sun L, Crooks RM: Single carbon nanotube membranes: a well-defined model for studying mass transport through nanoporous materials. J. Am. Chem. Soc.122,12340–12345 (2000).
  • 14  Howorka S, Nam J, Bayley H, Kahne D: Stochastic detection of monovalent and bivalent protein-ligand interactions. Agnew. Chem. Int. Ed.43,842–846 (2004).
  • 15  Heins EA, Siwy ZS, Baker LA, Martin CR: Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Lett.5,1824–1829 (2005).
  • 16  Siwy Z, Trofin L, Kohli P, Baker LA, Trautmann C, Martin CR: Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc.127,5000–5001 (2005).
  • 17  Stefureac R, Long YT, Kraatz HB, Howard P, Lee JS: Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry45,9172–9179 (2006).
  • 18  Krasilnikov OV, Rodrigues CG, Bezrukov SM: Single polymer molecules in a protein nanopore in the limit of a strong polymer–pore attraction. Phys. Rev. Lett.97,018301 (2006).
  • 19  Kasianowicz JJ, Brandin E, Branton D, Deamer DW: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA93,13770–13773 (1996).
  • 20  DeBlois RW, Bean CP: Counting and sizing of submicron particles by resistive pulse technique. Rev. Sci. Instrum.41,909–916 (1970).
  • 21  DeBlois RW, Bean CP, Wesley RKA: Electrokinetic measurements with submicron particles and pores by resistive pulse technique. J. Colloid Interface Sci.61,323–335 (1977).
  • 22  Hille B: Ion Channels of Excitable Membranes (3rd Edition). Sinauer, Sunderland, MA, USA (2001).
  • 23  Mueller P, Rudin DO, Tien HT, Wescott WC: Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature194,979–980 (1962).
  • 24  Bean RC, Shepherd WC, Chan H, Eichner J: Discrete conductance fluctuations in lipid bilayer protein membranes. J. Gen. Physiol.53,741–757 (1969).
  • 25  Hladky SB, Haydon DA: Discreteness of conductance change in bimolecular lipid membranes in presence of certain antibiotics. Nature225,451–453 (1970).
  • 26  Montal M, Mueller P: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl Acad. Sci. USA69,3561–3566 (1972).
  • 27  Neher E, Sakmann B, Steinbach JH: The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflügers Arch.375,219–228 (1978).
  • 28  Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch.391,85–100 (1981).
  • 29  Neher E, Sakmann B: Single-channel currents recorded from membrane of denervated frog muscle-fibers. Nature260,799–802 (1976).
  • 30  Krasilnikov OV, Sabirov RZ, Ternovsky VI, Merzliak PG, Tashmukhamedov BA: The structure of Staphylococcus-aureus α-toxin-induced ionic channel. Gen. Physiol. Biophys.7,467–473 (1988).
  • 31  Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H: Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science274,1859–1865 (1996).
  • 32  Szabo I, Bathori G, Tombola F, Brini M, Coppola A, Zoratti M: DNA translocation across planar bilayers containing Bacillus subtilis ion channels. J. Biol. Chem.272,25275–25282 (1997).
  • 33  Szabo I, Bathori G, Tombola F et al.: Double-stranded DNA can be translocated across a planar membrane containing purified mitochondrial porin. FASEB J.12,495–502 (1998).
  • 34  Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW: Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J.77,3227–3233 (1999).
  • 35  Meller A, Nivon L, Brandin E, Golovchenko J, Branton D: Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA97,1079–1084 (2000).
  • 36  Khulbe PK, Mansuripur M, Gruener R: DNA translocation through α-hemolysin nanopores with potential application to macromolecular data storage. J. Appl. Phys.97,104317 (2005).
  • 37  Wang H, Dunning JE, Huang APH, Nyamwanda JA, Branton D: DNA heterogeneity and phosphorylation unveiled by single-molecule electrophoresis. Proc. Natl Acad. Sci. USA101,13472–13477 (2004).
  • 38  Mathé J, Aksimentiev A, Nelson DR, Schulten K, Meller A: Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel. Proc. Natl Acad. Sci. USA102,12377–12382 (2005).
  • 39  Butler TZ, Gundlach JH, Troll MA: Determination of RNA orientation during translocation through a biological nanopore. Biophys. J.90,190–199 (2006).
  • 40  Meller A, Branton D: Single molecule measurements of DNA transport through a nanopore. Electrophoresis23,2583–2591 (2002).
  • 41  Henrickson SE, Misakian M, Robertson B, Kasianowicz JJ: Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett.85,3057–3060 (2000).
  • 42  Nakane J, Akeson M, Marziali A: Evaluation of nanopores as candidates for electronic analyte detection. Electrophoresis23,2592–2601 (2002).
  • 43  Meller A, Nivon L, Branton D: Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett.86,3435–3438 (2001).
  • 44  Muthukumar M: Polymer translocation through a hole. J. Chem. Phys.111,10371–10374 (1999).
  • 45  Lubensky DK, Nelson DR: Driven polymer translocation through a narrow pore. Biophys. J.77,1824–1838 (1999).
  • 46  Jeon TJ, Malmstadt N, Schmidt JJ: Hydrogel-encapsulated lipid membranes. J. Am. Chem. Soc.128,42–43 (2006).
  • 47  Kasianowicz JJ, Henrickson SE, Weetall HH, Robertson B: Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem.73,2268–2272 (2001).
  • 48  Chandler EL, Smith AL, Burden LM, Kasianowicz JJ, Burden DL: Membrane surface dynamics of DNA-threaded nanopores revealed by simultaneous single-molecule optical and ensemble electrical recording. Langmuir20,898–905 (2004).
  • 49  Nakane J, Wiggin M, Marziali A: A nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophys. J.87,615–621 (2004).
  • 50  Tropini C, Marziali A: Multi-nanopore force spectroscopy for DNA analysis. Biophys. J.92,1632–1637 (2007).
  • 51  Sauer-Budge AF, Nyamwanda JA, Lubensky DK, Branton D: Unzipping kinetics of double-stranded DNA in a nanopore. Phys. Rev. Lett.90,238101 (2003).
  • 52  Mathé J, Visram H, Viasnoff V, Rabin Y, Meller A: Nanopore unzipping of individual DNA hairpin molecules. Biophys. J.87,3205–3212 (2004).
  • 53  Mathé J, Arinstein A, Rabin Y, Meller A: Equilibrium and irreversible unzipping of DNA in a nanopore. Europhys. Lett.73,128–134 (2006).
  • 54  Bates M, Burns M, Meller A: Dynamics of DNA molecules in a membrane channel probed by active control techniques. Biophys. J.84,2366–2372 (2003).
  • 55  Hornblower B, Coombs A, Whitaker RD et al.: Single-molecule analysis of DNA–protein complexes using nanopores. Nat. Methods4,315–317 (2007).
  • 56  Sánchez-Quesada J, Saghatelian A, Cheley S, Bayley H, Ghadiri MR: Single DNA rotaxanes of a transmembrane pore protein. Agnew. Chem. Int. Ed.43,3063–3067 (2004).
  • 57  Ashkenasy N, Sánchez-Quesada J, Bayley H, Ghadiri MR: Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Agnew. Chem. Int. Ed.44,1401–1404 (2005).
  • 58  Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D, Akeson M: Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat. Biotechnol.19,248–252 (2001).
  • 59  Winters-Hilt S, Vercoutere W, DeGuzman VS, Deamer D, Akeson M, Haussler D: Highly accurate classification of Watson–Crick basepairs on termini of single DNA molecules. Biophys. J.84,967–976 (2003).
  • 60  Winters-Hilt S, Akeson M: Nanopore cheminformatics. DNA Cell Biol.23,675–683 (2004).
  • 61  Vercoutere WA, Winters-Hilt S, DeGuzman VS et al.: Discrimination among individual Watson–Crick base pairs at the termini of single DNA hairpin molecules. Nucleic Acids Res.31,1311–1318 (2003).
  • 62  DeGuzman VS, Lee CC, Deamer DW, Vercoutere WA: Sequence-dependent gating of an ion channel by DNA hairpin molecules. Nucleic Acids Res.34,6425–6437 (2006).
  • 63  Iqbal R, Landry M, Winters-Hilt S: DNA molecule classification using feature primitives. BMC Bioinformatics7(Suppl. 2),S15 (2006).
  • 64  Landry M, Winters-Hilt S: Analysis of nanopore detector measurements using machine learning methods, with application to single-molecule kinetic analysis. BMC Bioinformatics (2007) (In press).
  • 65  Churbanov A, Baribault C, Winters-Hilt S: Duration learning for nanopore ionic flow blockade analysis. BMC Bioinformatics (2007) (In press).
  • 66  Winters-Hilt S, Landry M, Akeson M et al.: Cheminformatics methods for novel nanopore analysis of HIV DNA termini. BMC Bioinformatics7(Suppl. 2),S22 (2006).
  • 67  Winters-Hilt S, Davis A, Amin I, Morales E: Preliminary nanopore cheminformatics of protein binding to non-terminal and terminal DNA regions: analysis of transcription factor binding and retroviral DNA terminus dynamics. BMC Bioinformatics (2007) (In press).
  • 68  Thomson K, Amin I, Morales E, Winters-Hilt S: Preliminary nanopore cheminformatics analysis of aptamer-target binding strength. BMC Bioinformatics (2007) (In press).
  • 69  Winters-Hilt S: The α-hemolysin nanopore transduction detector: single-molecule binding studies and immunological screening of antibodies and aptamers. BMC Bioinformatics (2007) (In press).
  • 70  Feynman RP: Simulating physics with computers. Int. J. Theor. Phys.21,467–488 (1982).
  • 71  DiVincenzo DP: Quantum computation. Science270,255–261 (1995).
  • 72  Howorka S, Cheley S, Bayley H: Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol.19,636–639 (2001).
  • 73  Howorka S, Movileanu L, Braha O, Bayley H: Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proc. Natl Acad. Sci. USA98,12996–13001 (2001).
  • 74  Howorka S, Bayley H: Probing distance and electrical potential within a protein pore with tethered DNA. Biophys. J.83,3202–3210 (2002).
  • 75  Aksimentiev A, Schulten K: Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J.88,3745–3761 (2005).
  • 76  Astier Y, Braha O, Bayley H: Toward single molecule DNA sequencing: Direct identification of ribonucleoside and deoxyribonucleoside 5´-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc.128,1705–1710 (2006).
  • 77  Jett JH, Keller RA, Martin JC et al.: High-speed DNA sequencing: an approach based upon fluorescence detection of single molecules. J. Biomol. Struct. Dyn.7,301–309 (1989).
  • 78  White RJ, Zhang B, Daniel S et al.: Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support. Langmuir22,10777–10783 (2006).
  • 79  Kang XF, Cheley S, Rice-Ficht AC, Bayley H: A storable encapsulated bilayer chip containing a single protein nanopore. J. Am. Chem. Soc.129,4701–4705 (2007).
  • 80  Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA: Ion beam sculpting on the nanoscale. Nature412,166–169 (2001).
  • 81  Kim MJ, Wanunu M, Bell DC, Meller A: Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater.18,3149–3153 (2006).
  • 82  Wu S, Park SR, Ling XS: Lithography-free formation of nanopores in plastic membranes using laser heating. Nano Lett.6,2571–2576 (2006).
  • 83  Park SR, Peng HB, Ling XS: Fabrication of nanopores in silicon chips using feedback chemical etching. Small3,116–119 (2007).
  • 84  Healy K, Schiedt B, Morrison AP: A review of solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine (In Press).
  • 85  Li J, Gershow M, Stein D, Brandin E, Golovchenko JA: DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater.2,611–615 (2003).
  • 86  Chang H, Kosari F, Andreadakis G, Alam MA, Vasmatzis G, Bashir R: DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Lett.4,1551–1556 (2004).
  • 87  Ho C, Qiao R, Heng JB et al.: Electrolytic transport through a synthetic nanometer-diameter pore. Proc. Natl Acad. Sci. USA102,10445–10450 (2005).
  • 88  Storm AJ, Chen JH, Zandbergen HW, Dekker C: Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E71, 051903 (2005).
  • 89  Heng JB, Ho C, Kim T et al.: Sizing DNA using a nanometer-diameter pore. Biophys. J.87,2905–2911 (2004).
  • 90  Heng JB, Dimitrov V, Grinkova YV et al.: The detection of DNA using a silicon nanopore. In: IEDM’03 Technical Digest. IEEE International, Washington, DC, USA 32.2.1–32.2.4 (2003).
  • 91  Fologea D, Gershow M, Ledden B, McNabb DS, Golovchenko JA, Li J: Detecting single stranded DNA with a solid state nanopore. Nano Lett.5,1905–1909 (2005).
  • 92  Harrell CC, Choi Y, Horne LP, Baker LA, Siwy ZS, Martin CR: Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir22,10837–10843 (2006).
  • 93  Chen P, Gu JJ, Brandin E, Kim YR, Wang Q, Branton D: Probing single DNA molecule transport using fabricated nanopores. Nano Lett.4,2293–2298 (2004).
  • 94  Heng JB, Aksimentiev A, Ho C et al.: Stretching DNA using the electric field in a synthetic nanopore. Nano Lett.5,1883–1888 (2005).
  • 95  Heng JB, Aksimentiev A, Ho C et al.: The electromechanics of DNA in a synthetic nanopore. Biophys. J.90,1098–1106 (2006).
  • 96  Mara A, Siwy Z, Trautmann C, Wan J, Kamme F: An asymmetric polymer nanopore for single molecule detection. Nano Lett.4,497–501 (2004).
  • 97  Storm AJ, Storm C, Chen JH, Zandbergen H, Joanny JF, Dekker C: Fast DNA translocation through a solid-state nanopore. Nano Lett.5,1193–1197 (2005).
  • 98  Fologea D, Brandin E, Uplinger J, Branton D, Li J: DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis (2007) (In press).
  • 99  Stellwagen E, Dong Q, Stellwagen NC: Monovalent cations affect the free solution mobility of DNA by perturbing the hydrogen-bonded structure of water. Biopolymers78,62–68 (2005).
  • 100  Chen P, Mitsui T, Farmer DB, Golovchenko J, Gordon RG, Branton D: Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett.4,1333–1337 (2004).
  • 101  Frontali C, Dore E, Ferrauto A et al.: Absolute method for the determination of the persistence length of native DNA from electron-micrographs. Biopolymers18,1353–1373 (1979).
  • 102  Baumann CG, Smith SB, Bloomfield VA, Bustamante C: Ionic effects on the elasticity of single DNA molecules. Proc. Natl Acad. Sci. USA94,6185–6190 (1997).
  • 103  Fan R, Karnik R, Yue M, Li DY, Majumdar A, Yang PD: DNA translocation in inorganic nanotubes. Nano Lett.5,1633–1637 (2005).
  • 104  Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C: Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett.6,89–95 (2006).
  • 105  Chang H, Venkatesan B, Iqbal S et al.: DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor. Biomed. Microdev.8,263–269 (2006).
  • 106  Fologea D, Uplinger J, Thomas B, McNabb DS, Li J: Slowing DNA translocation in a solid-state nanopore. Nano Lett.5,1734–1737 (2005).
  • 107  Keyser UF, Koeleman BN, van Dorp S et al.: Direct force measurements on DNA in a solid-state nanopore. Nat. Phys.2,473–477 (2006).
  • 108  Keyser UF, van der Does J, Dekker C, Dekker NH: Optical tweezers for force measurements on DNA in nanopores. Rev. Sci. Instrum.77,105105 (2006).
  • 109  Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C: Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater.2,537–540 (2003).
  • 110  Iqbal SM, Akin D, Bashir R: Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol.2,243–248 (2007).
  • 111  Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W, Martin CR: DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science305,984–986 (2004).
  • 112  Healy K, Morrison AP: Recent progress in automated production and robust packaging for track-etched single-nanopores. Biophys. J. (Suppl.),163A (2007).
  • 113  Heng JB, Aksimentiev A, Ho C et al.: Beyond the gene chip. Bell Labs Tech. J.10,5–22 (2005).
  • 114  Gracheva ME, Xiong AL, Aksimentiev A, Schulten K, Timp G, Leburton JP: Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor. Nanotechnology17,622–633 (2006).
  • 115  Gracheva ME, Aksimentiev A, Leburton JP: Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor. Nanotechnology17,3160–3165 (2006).
  • 116  King GM, Golovchenko JA: Probing nanotube-nanopore interactions. Phys. Rev. Lett.95,216103 (2005).
  • 117  Lagerqvist J, Zwolak M, DiVentra M: Fast DNA sequencing via transverse electronic transport. Nano Lett.6,779–782 (2006).
  • 118  Zhang XG, Krstic PS, Zikic R, Wells JC, Fuentes-Cabrera M: First-principles transversal DNA conductance deconstructed. Biophys. J.91,L4–L6 (2006).
  • 119  Fischbein MD, Drndic M: Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett.7,1329–1337 (2007).
  • 120  Mika S, Schäfer C, Laskov P, Tax D, Müller K: Support vector machines. In: Handbook of Computational Statistics: Concepts and Methods. Gentle JE, Härdle W, Mori Y (Eds). Springer, Heidelberg, Germany 841–876 (2004).
  • 121  Aksimentiev A, Heng JB, Timp G, Schulten K: Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys. J.87,2086–2097 (2004).
  • 201  WHC Foundation: Wallace Coulter biography www.whcf.org/WHCF_WallaceHCoulter.htm
  • 202  Healy K, Morrison AP: Recent progress in automated production and robust packaging for track-etched single-nanopores: accompanying poster to [113] http://eleceng.ucc.ie/nanopore/pubs/healy_bps2007.pdf.
  • 301  Church G, Deamer D, Branton D, Baldarelli R, Kasianowicz J: Characterization of individual polymer molecules based on monomer-interface interactions. US5795782 (1998).
  • 302  Coulter WH: Means for counting particles suspended in a fluid. US2656508 (1953).