We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Carbon nanotubes in cancer theragnosis

    Vivek S Thakare

    Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Sector 67, SAS Nagar (Mohali), Punjab, 160062, India

    ,
    Manasmita Das

    Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Sector 67, SAS Nagar (Mohali), Punjab, 160062, India

    ,
    Amit K Jain

    Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Sector 67, SAS Nagar (Mohali), Punjab, 160062, India

    ,
    Swapnil Patil

    Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Sector 67, SAS Nagar (Mohali), Punjab, 160062, India

    &
    Published Online:https://doi.org/10.2217/nnm.10.95

    Carbon nanotubes as a unique and novel class of nanomaterials have shown considerable promise in cancer therapy and diagnosis amidst the myriad of nanocarriers. The presence of a large surface area enables the engineering of the surface of nanotubes, thus making them biocompatible, and large benefits can be harnessed from them. Together with their ability to encapsulate small molecules, stacking interactions and conjugation, nanotubes have improved the profile of anticancer agents. The propensity to absorb the body transparent NIR radiation also envisages photothermal and photoacoustic therapy using nanotubes. This article sheds light on the role of carbon nanotubes in cancer therapy and diagnosis based on recent findings.

    Bibliography

    • Ferrari M: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer3,161–171 (2005).
    • Thakare VS, Godugu C, Mahajan R, Chauhan D, Jain S: Functionalized carbon nanotubes: novel drug delivery cargos. Curr. Trends Pharm. Sci. (10)3,42–47 (2009).
    • Dresselhaus MS, Dresselhaus G, Charlier JC, Hernández E: Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Transact. A Math. Phys. Eng. Sci.1823,2065–2098 (2004).
    • Joselevich E: Electronic structure and chemical reactivity of carbon nanotubes: a chemist’s view. Chem. Phys. Chem.5,619–624 (2004).
    • Thess A, Lee R, Nikolaev P et al.: Crystalline ropes of metallic carbon nanotubes. Science5274,483–487 (1996).
    • Donaldson K, Aitken R, Tran L et al.: Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci.15–22 (2006).
    • Ye Y, Ahn CC, Witham C et al.: Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett.16,2307–2309 (1999).
    • Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A: Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon4,507–514 (2001).
    • Foldvari M, Bagonluri M: Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomedicine3,173–182 (2008).
    • 10  Foldvari M, Bagonluri M: Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine3,183–200 (2008).
    • 11  Lucente-Schultz RM, Moore VC, Leonard AD et al.: Antioxidant single-walled carbon nanotubes. J. Am. Chem. Soc.11,3934–3941 (2009).
    • 12  Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z: Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano. Lett.10,2976–2980 (2007).
    • 13  Klumpp C, Kostarelos K, Prato M, Bianco A: Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta.3,404–412 (2006).
    • 14  Prato M, Kostarelos K, Bianco A: Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res.41,60–68 (2008).
    • 15  Niyogi S, Hamon MA, Hu H et al.: Chemistry of single-walled carbon nanotubes. Acc. Chem. Res.12,1105–1113 (2002).
    • 16  Jain AK, Dubey V, Mehra NK et al.: Carbohydrate-conjugated multiwalled carbon nanotubes: development and characterization. Nanomedicine4,432–442 (2009).
    • 17  Tasis D, Tagmatarchis N, Georgakilas V, Gamboz C, Soranzo MR, Prato M: Supramolecular organized structures of fullerene-based materials and organic functionalization of carbon nanotubes. C R Chimie5–6, 597–602 (2003).
    • 18  Chen, B, Liang F: A review on medical applications of single walled carbon nanotubes. Curr. Med. Chem.17,10–24 (2010).
    • 19  Singh R, Pantarotto D, Lacerda L et al.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotubes radiotracers. Proc. Natl. Acad. Sci. USA103,3357–3362 (2006).
    • 20  McDevitt MR, Chattopadhyay D, Jaggi JS et al.: PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. Plus One2,907 (2007).
    • 21  Schipper ML, Nakayama-Ratchford N, Davis CR et al.: A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice Nat. Nanotechnol.3,216–221, (2008)
    • 22  Cheng J, Fernando KAS, Veca LM et al.: Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano2,2085–2094 (2008).
    • 23  Liu Z, Cai W, He L et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol.2,47–52 (2007).
    • 24  Liu Z, Tabakman S, Welsher K, Dai H: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nanoresearch2(2),85–120 (2009).
    • 25  Prencipe G, Tabakman SM, Welsher K et al.: PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc.131,4783–4787 (2009).
    • 26  Liu Z, Davis C, Cai W, He L, Chen X, Dai H: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA105,1410–1415 (2008).
    • 27  Poland CA, Duffin R, Kinloch I et al.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol.3,423–428 (2008).
    • 28  Card JW, Zeldin DC, Bonner JC, Nestmann ER: Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung295,400–411 (2008).
    • 29  Takagi A, Hirose A, Nishimura T et al.: Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci.33,105–116 (2008).
    • 30  Liu X, Hurt RH, Kane AB: biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon48,1961–1969 (2010).
    • 31  Multu G, Budinger GR, Green AA et al.: biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano. Lett.10,1664–1670 (2010).
    • 32  Kolosnjaj T, Hartman, KB, Boudjemaa S et al.: In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano4,1481–1492 (2010).
    • 33  Hong SY, Tobias G, Al-Jamal KT et al.: Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mat.9,485–490 (2010).
    • 34  Kagan VE, Konduru NV, Feng W et al.: Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotech5,554–559 (2010).
    • 35  Tripisciano C, Kraemer K, Taylor A et al.: Single-wall carbon nanotubes based anticancer drug delivery system. Chem. Phys. Lett.478,200 (2009).
    • 36  de Leon A, Jalbout AF, Basiuk VA: SWNT-amino acid interactions: a theoretical study. Chem. Phys. Lett.1–3, 185–190 (2008).
    • 37  Hilder TA, Hill JM: Carbon nanotubes as drug delivery nanocapsules. Curr. Appl. Phys.3–4,258–261 (2008).
    • 38  Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K: Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun.4,459–461 (2008).
    • 39  Heister E, Neves V, Tîlmaciu C et al.: Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon9,2152–2160 (2009).
    • 40  Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ: Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials30,6041–6047 (2009).
    • 41  Liu Z, Sun X, Nakayama-Ratchford N, Dai H: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano1,50–56 (2007).
    • 42  Tripisciano C, Kraemer K, Taylor A, Borowiak-Palen E: Single-wall carbon nanotubes based anticancer drug delivery system. Chem. Phys. Lett.4–6, 200–205 (2009).
    • 43  Pastorin G, Wu W, Wieckowski S et al.: Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun.11,1182–1184 (2006).
    • 44  Yang F, Fu DL, Long J, Ni QX: Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med. Hypotheses4,765–767 (2008).
    • 45  Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ: Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc.34,11467–11476 (2008).
    • 46  Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ: Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J. Am. Chem. Soc.27,8438–8439 (2007).
    • 47  Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K: Solubilization of single-wall carbon nanohorns using a PEG–doxorubicin conjugate. Mol. Pharm.4,407–414 (2006).
    • 48  Tekade RK, Kumar PV, Jain NK: Dendrimers in oncology: an expanding horizon. Chem. Rev.1,49–87 (2009).
    • 49  Shi X, Wang SH, Shen M et al.: Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules7,1744–1750 (2009).
    • 50  Weng X, Wang M, Ge J et al.: Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction. Mol. BioSysts.5,1224–1231 (2009).
    • 51  Yan X, Xiugong G, Oleh T et al.: Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer9,351, (2009).
    • 52  McDevitt MR, Chattopadhyay D, Kappel BJ et al.: Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med.7,1180 (2007).
    • 53  Chakravarty P, Marches R, Zimmerman NS et al.: Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA25,8697 (2008).
    • 54  Kam NWS, O’Connell M, Wisdom JA, Dai H: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA33,11600–11165 (2005).
    • 55  Jie M, Jie M, Jinhong D et al.: Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small9,1364–1370 (2008).
    • 56  Ou Z, Wu B, Xing D, Zhou F, Wang H, Tang Y: Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting. Nanotechnology10,105102 (2009).
    • 57  El-Aneed A: Current strategies in cancer gene therapy. Eur. J. Pharmacol.1–3, 1–8 (2004).
    • 58  Albertorio F, Hughes ME, Golovchenko JA, Branton D: Base dependent DNA–carbon nanotube interactions: activation enthalpies and assembly–disassembly control. Nanotechnology20,395101 (2009).
    • 59  Krajcik R, Jung A, Hirsch A, Neuhuber W, Zolk O: Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes. Biochem. Biophys. Res. Commun.2,595–602 (2008).
    • 60  Pantarotto D, Singh R, McCarthy D et al.: Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem. Int. Ed. Engl.39,5354–5358 (2004).
    • 61  Wu B, Hou SH, Yu M et al.: Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications. Mater. Sci. Engineer. C.29,346–349 (2009)
    • 62  Kumar A, Jena PK, Behera S, Lockey RF: Mohapatra S: DNA and peptide delivery by functionalized chitosan-coated single-walled carbon nanotubes. J. Biomedical Nanotech.1,392–396 (2005).
    • 63  Kam NWS, Liu Z, Dai H: Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc.127,12492–12493 (2005).
    • 64  Yang D, Yang F, Hu J et al.: Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem. Commun.29,4447–4449 (2009).
    • 65  Liu Z, Chen K, Davis C et al.: Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res.16,6652 (2008).
    • 66  Wu W, Li R, Bian X et al.: Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano9,2740–2750 (2009).
    • 67  Bhirde AA, Patel V, Gavard J et al.: Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano2,307–316 (2009).
    • 68  Yang R, Yang X, Zhang Z et al.: Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther.24,1714–1723 (2006).
    • 69  Zhang Z, Yang X, Zhang Y et al.: Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res.16,4933 (2006).
    • 70  Bartholomeusz G, Cherukuri P, Kingston J et al.: In vivo therapeutic silencing of hypoxia-inducible factor 1 α (HIF-1α) using single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res.2,279–271 (2009).
    • 71  Zhou F, Ou Z, Wu B, Resasco DE, Chen WR: Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt.14,021009 (2009).
    • 72  Ghosh S, Dutta S, Gomes E et al.: Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano.3,2667–2673 (2009).
    • 73  Levi-Polyachenko NH, Merkel EJ, Jones BT, Carroll DL, Stewart JH: Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol. Pharm.4,1092–1099 (2009).
    • 74  Carlson LJ, Krauss TD: Photophysics of individual single-walled carbon nanotubes. Acc. Chem. Res.2,235–243 (2008).
    • 75  Govorov AO, Richardson HH: Generating heat with metal nanoparticles. Nano Today1,30–38 (2007).
    • 76  Gannon CJ, Cherukuri P, Yakobson BI et al.: Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer12,2654–2665 (2007).
    • 77  Torti SV, Byrne F, Whelan O et al.: Thermal ablation therapeutics based on CNx multi-walled nanotubes. Int. J. Nanomed.4,707 (2007).
    • 78  Burke A, Ding X, Singh R et al.: Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl Acad. Sci. USA31,12897 (2009).
    • 79  Hecht D: “Nanobombs” shock cancer cells Nanomedicine. Mat. Today12,8 (2009).
    • 80  Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB: Structure-assigned optical spectra of single-walled carbon nanotubes. Science5602,2361 (2002).
    • 81  Kim P, Odom TW, Huang JL, Lieber CM: Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys. Rev. Lett.6,1225–1228 (1999).
    • 82  Bin K, Decai Y, Yaodong D, Shuquan C, Da C, Yitao D: Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as ‘‘bomb agents’’. Small,11,1292–1301 (2009).
    • 83  Zhang M, Murakami T, Ajima K et al.: Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc. Natl Acad. Sci. USA105,14773 (2008).
    • 84  Hawthorne MF: New horizons for therapy based on the boron neutron capture reaction. Mol. Med. Today4,174–181 (1998).
    • 85  Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M: Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc.27,9875–9880 (2005).
    • 86  Manne U, Srivastava RG, Srivastava S: Keynote review: recent advances in biomarkers for cancer diagnosis and treatment. Drug Discov. Today14,965–976 (2005).
    • 87  Xiang L, Yuan Y, Ou Z, Yang S, Zhou F: Photoacousticmolecular imaging with antibody-functionalized single-walled carbon nanotubes for early diagnosis of tumor. J. Biomed. Optics14,021008 (2009).
    • 88  Pramanik M, Song KH, Swierczewska M, Green D, Sitharaman B, Wang LV: In vivo carbon nanotube-enhanced non-invasive photoacoustic SLN mapping. Phys. Med. Biol.54,3291–3301 (2009).
    • 89  Pramanik M, Swierczewska M, Green D, Sitharaman B, Wang LV: Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt.14,034018 (2009).
    • 90  de La Zerda A, Liu Z, Zavaleta C et al.: Photons Plus Ultrasound: Imaging and Sensing 2009. Oraevsky AA, Wang LV (Eds). Proceedings of the Society of Photo Optical Instrumentation Engineers, 71772K–71772K (2009).
    • 91  Welsher K, Liu Z, Daranciang D, Dai H: Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano. Lett.8,586–590 (2008).
    • 92  Welsher K, Liu Z, Sherlock SP et al.: A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol.4,773–780 (2009).
    • 93  Panchapakesan B, Cesarone G, Liu S, Teker K, Wickstrom E: Single-wall carbon nanotubes with adsorbed antibodies detect live breast cancer cells. NanoBiotechnology4,353–360 (2005).
    • 94  Teker K: Bioconjugated carbon nanotubes for targeting cancer biomarkers. Mater. Sci. Eng. B1–3, 83–87 (2008).
    • 95  Bareket L, Rephaeli A, Berkovitch G, Nudelman A, Rishpon J: Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs. Bioelectrochemistry74,94–99 (2009).
    • 96  Jin H, Heller DA, Kalbacova M et al.: Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single walled carbon nanotubes. Nat. Nanotechnol.5,302–309 (2010).
    • 97  Loeb S, Catalona WJ: Prostate-specific antigen in clinical practice. Cancer Lett.1,30–39 (2007).
    • 98  Kim JP, Lee BY, Lee J, Hong S, Sim SJ: Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens. Bioelectron.11,3372–3378 (2009).
    • 99  Yu X, Munge B, Patel V et al.: Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc.34,11199–11205 (2006).
    • 100  Dukovic G, White BE, Zhou Z et al.: Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Phys. Condens. Matter.126,5915–5921 (2003).
    • 101  Heller DA, Jin H, Martinez BM et al.: Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat. Nanotechnol.4,114–120 (2009).
    • 102  Bi S, Zhou H, Zhang S: Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosens. Bioelectron.10,2961–2966 (2009).