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Abstract

Wildcard identity-based encryption (WIBE) is essentially a generalization of Hierarchical identity
based encryption (HIBE) where at the time of encryption, the sender can decide to make the cipher-
text decryptable by a whole range of users whose identities match a certain pattern, defined as a
sequence of identities and wildcards. Almost existing WIBE schemes have a weakness, that is the
large ciphertext size. Only very recently, at ESORICS’ 18, Kim et al. proposed the first WIBE scheme
with constant size ciphertext (including four elements), however, the user’s secret key size in their
scheme is still large. In this paper, we propose a new WIBE scheme which is an improvement of Kim
et al.’s scheme in term of all the ciphertext size, the secret key size and the decryption time. More
precisely, in our scheme the ciphertext just contains three elements and user needs to keep only one
element secret, all other elements in the user’s secret key can be made public. For decrypting, user
in our scheme only needs to compute two Pairings.

Keywords: wildcard identity based encryption, constant size ciphertex, constant size secret key,
fast decryption.

1 Introduction

An Identity Base Encryption (IBE) scheme, introduced by Shamir [[1] in 1984, is a public-key cryptosys-
tem where any string is a valid public key such as email addresses and dates. It was until 2001 that Boneh
and Franklin [2, 3] introduced the first practical IBE scheme using bilinear maps. In an IBE, the trusted
third party, called a Private Key Generator (PKG), who has the master secret key, can issue a private
key for each user with identity in the system, and hence IBE helps to eliminate the need for a public key
distribution infrastructure. In a large network, the work of PKG would be burdensome in both private key
generation, which will be computationally expensive, and identity verification as well as secure private
key transmissions. Gentry and Silverberg [4] then came up with the idea of hierarchy identity-based en-
cryption (HIBE) schemes which allows a root PKG to distribute the workload by delegating private key
generation and identity authentication to lower-level PKGs. In an HIBE scheme [4} 5], root PKG needs
to generate the private keys for only the identities of the first level, who in turn can use their private keys
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to generate the private keys for identities of next level. Since then, several efficient HIBE schemes have
been constructed [6} 7, 8]].

One of the main application areas proposed for IBE is that of email encryption, in which given an
email address, one can encrypt a message to the owner of the email address. Motivated by the fact that
many email addresses correspond to groups of users rather than single individuals, Abdalla et al. [9,
10] introduced the notion of wildcarded identity-based encryption (WIBE), a generalisation of HIBE,
which allows the encrypter to replace any component of the receipient identity with a wildcard so that
any identity matching the pattern can decrypt. For instance, by encrypting a message to the pattern
*@cs.univ.edu, then any user from the computer science department of univ would be able to decrypt
it. The authors [9] then proposed three WIBE constructions from HIBE schemes in [6, [7, [8]. However,
their ciphertext size grows linearly in the depth of the pattern. Abdalla et al. [9] also introduced a generic
construction of a WIBE scheme from an HIBE scheme whose ciphertext size is as the same as that of
HIBE scheme. Hence one can easily construct a constant size ciphertext WIBE scheme from any constant
size ciphertext HIBE scheme (e.g., [7]]). However, the secret key size grows exponentially with the depth
of the pattern, this scheme is obviously impractical.

At ESORICS 2018, Kim et al. [11] reversed the method of Abdalla et al. [9]] and proposed the first
practical WIBE scheme, based on the HIBE scheme in [7]], with constant size ciphertext; every ciphertext
contains only four group elements. Their method is to let each user store an extra data for each non-
wildcard identity in order to replace the identity by a wildcard. A pattern with [ specific identity strings
leads to a secret key with / additional elements and hence reduces the extra data values for each wildcard
in the ciphertext as a single element; see [[11]] for more detail.

However, the drawback of all aforementioned schemes is that their secret key size is large, increasing
linearly in the depth of the pattern; see Table [I|for more detail.

Our contributions. In this paper, we propose a new improved WIBE scheme which has following
properties:

* constant-size of ciphertext: the ciphertext just includes three elements;

* constant-size of secret key: in our scheme, user just needs to keep only one element secret, all
other elements can be made public. The secret key size of all current schemes grows linearly with
the depth of pattern;

* fast decryption: to decrypt, user just needs to compute two Pairings in the prime order setting and
L multiplicative operations, L is the pattern depth.

To the best of our knowledge, there exists only one WIBE scheme which achieves the constant-size
of ciphertext property, that is the scheme at ESORICS’18 [[11]]. Compare to this scheme, our scheme is
an improvement in term of all ciphertext-size (three elements compare to four elements), secret key size
(one element compares to O(L) elements) and decryption time (two pairing operations compare to three
pairing operations plus L exponential operations). Our scheme and their scheme also achieve the same
level of security, that is the CPA-selective security under a similar assumption. The weaknesses of our
scheme compare to the scheme at ESORICS’18 are that, in our scheme the public storage is larger and
our scheme is not scalable (the maximum number of identities is fixed at the setup phase). In addition,
we note that in [11]], the authors also show how to improve the security of their scheme with the trade-off
on the efficiency.
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2 Preliminaries

2.1 Identity-based Encryption

An IBE scheme is a tuple of four algorithms IBE = (Setup, KeyDer, Encrypt, Decrypt) providing the
following functionality. The trusted authority runs Setup to generate a master key pair (mpk, msk). It
publishes the master public key mpk and keeps the master secret key msk private. For an ID in the
system, the trusted authority generates a secret key d|p <— KeyDer(msk, D) and sends it to the user with
identity ID. To encrypt a message m to the user with identity ID, the sender computes the ciphertext
C «+ Encrypt(mpk,ID,m), which can be decrypted by the user as m < Decrypt(d|p,C). We refer to [3]]
for the security definitions for IBE schemes.

2.2 Hierarchical Identity-based Encryption

In a hierarchical identity-based encryption (HIBE) scheme, users are arranged in a tree of depth L
with root being the trusted authority. The identity of a user at level 0 </ < L in the tree is given

by a vector ID = (IDy,---,ID;) € ({0,1}*)!. A HIBE scheme is a tuple of algorithms HIBE =
(Setup, KeyDer, Encrypt, Decrypt) providing the same functionality as an IBE scheme, except that a
user ID = (IDy,---,1Dy) at level [ can use its own secret key d|p to generate a secret key for any of its

children ID" = (IDy,---,1D;,ID;4 1) via djp + KeyDer(dip,ID;41). We refer to [4,[3, 7] for the security
definitions for HIBE schemes.

2.3 Wildcarded Identity-based Encryption

We follow [9, [11]] to define wildcarded identity-based encryption (WIBE) schemes with their security
definitions. A pattern in our scheme is described by a vector P = (P;,---,P;) € ({0,1}* U {x})’, where
* is a special wildcard symbol. We say that a pattern P' = (P[,--- ,P;) belongs to P, denoted by P’ €, P,
if and only if in case ¢/ > ¢ foralli=1,--- ¢, either P/ = P,or P, = ;incase ¢’ </ foralli=1,--- ¢,

either P/ = P, or P, = x and Py = --- = P, = *. We say P’ matches P, denoted by P’ ~ P, if and only
ifincase ¢/ </{foralli=1,--- ¢, either / =P, or P,=x%or P/ =x;incase ¢’ > {foralli=1,--- ¢,
either / =P orP,=xor P/ =xand P |, =--- =P, = *.

If P=(Py,---,P) is a pattern, then we define W(P) to be the set of wildcard positions in P, i.e.,
W(P)={1<i<L:P =x}, and W(P) to be its complement. Hence W (P) "W (P) =@ and W(P)U
W(P)={1,---,L}.

A WIBE scheme is a tuple consisting of five algorithms providing the following functionality.

Setup(17L ,L,n) On input the security parameter A, the maximum number of levels L and the maximum
number of identities at each level n, it outputs the public parameters param and the master secret
key msk.

Extract(param, P,msk) On input the public parameters, a pattern P and the master secret key msk, it
outputs the secret key skp for P.

KeyDer(param, P’,skp) On input the public parameters param, a pattern P’ = (P{,---,P/ ) and the

secret key skp of a pattern P in which P\ {P/, |} €. P, it generates the secret key skp: for P'.

Encrypt(param,P,.#) On input the public parameters param, a pattern P and a message .Z, it outputs
a ciphertext C.

Decrypt(skp,C,param) On input the secret key skp of a pattern P, a ciphertext C for pattern P, it
outputs a message .7 if and only if P’ ~ P.
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For correctness, it requires that for all public parameter and master secret key pair (param, msk)
output by Setup, all messages .#, and all patterns P € ({0,1}* U {*})!,P’ € ({0,1}* U{*})" such that
P~ P', we have

Decrypt(KeyDer(msk, P), Encrypt(param,P',.#)) = .#
with probability 1.
The security model of a WIBE scheme is similar to that of a HIBE scheme. Formally, the

IND-WID-CPA security model is defined through the following game, played between an adversary
of = (o,9%) and a challenger:

Setup The challenger generates (param, msk) <— Setup and sends param to .<7.

Phase 1 The adversary runs @] on param. The adversary is given access to a key derivation oracle
that, on input of pattern P € (Z, U {¥})!, returns the secret key skp < Extract(param, P,msk)
corresponding to that identity.

Challenge The adversary outputs two equal-length messages (.#,.#1) and a challenge pattern P* such
that P* % P for all queried P, along with some state information state. The challanger chooses a bit
b < {0, 1}, computes the ciphertext C* <— Encrypt(param, P*, #},) and sends C* to the adversary.

Phase 2 The adversary runs 2% on the input C* and the state information state. The adversary is given
access to a key derivation oracle as before, but not on any identity that matches P*.

Guess The adversary outputs its guess b’ € {0, 1} for b.

The adversary wins the game if b = b/, and its advantage is defined as

Pr[</ wins] — ;’ .

Definition 1. A (1,qk, €)-adversary against the IND-WID-CPA security of the WIBE scheme is an algo-

rithm that runs in time at most t, makes at most qg key derivation oracle queries, and has advantage at
least € in the IND-WID-CPA game described above.

We also define a weaker selective-identity (sWID) security notion, in which the adversary commits
to the challenge pattern at the beginning of the game, before the public parameters are made available.
2.4 Computational Complexity Assumptions

Security of our system is based on the complexity assumption called the Modified-q-BDHE assump-
tion [12]], which is a simple modification of the well-known BDHE assumption [[13]].

Definition 2. Modified-q-BDHE problem: Suppose that (p,G,@,GT,e) is a bilinear group system,
choose y,v,k,q & Z,, a generator g € G. Given

7 — y ¥yt YV Y Yy ¥y YUy ok kv

Y_ g?g7"'7g 7g 7""g 7g 7g 7"'7g 7g 7""g 7g 7g
it is difficult to distinguish between T = e(g,g)y‘”'k €GrorT=R & Gr.

Let 7 be an adversary that solves the Modified-q-BDHE problem above, denote € the advantage of
ok
’Pr [ (7, = e(g,8)"") = 0] —Pr [/ (7,7 = R) = 0] ] > ¢

77



WIBE with Constant-size Ciphertext and Secret Key Duong, Susilo and Trinh

Definition 3. If there doesn’t exist any polytime adversary who has a non-negligible advantage in solving
the Modified-q-BDHE problem, then we say that the Modified-q-BDHE assumption holds.

It is easy to see that to distinguish between T = e(g, g)yqﬂk €GrorT=R & Gr, one needs to have
1 q+1 o .
one of the values qu+ or gﬂ+ ¥, however we do not have these elements in Y and there is also no way
from Y to derive one of these elements.

3 Our proposed WIBE scheme

3.1 Construction

Our WIBE scheme is described as follows.

Setup(17L L,n) : this algorithm takes as input the security parameter A, the maximum number of levels
L and the maximum number of identities in each level n. Let .# 2 = {ID; J}l Lok be the identity

universe, and {ID;o};—1,. 1 be a set of dummy identities. Let ¢ : {0, 1}* —> G be a target colli-
sion hash function. Assume that D = (p,G,Gr,e) is a bilinear map group system, the algorithm
randomly picks a generator g € G and two scalars x,y € Z,,. The public parameters param and the
master secret key msk are set:

0,....n

Root.

Extract(param, P,msk): to generate the secret key skp for a pattern P = (Py,...,FP;),¢ < L, from the

master secret key msk, the algorithm picks ¢ & Z.,, and computes skp = (a,b,c,d) where

((J,b,c,d) = <8X~g)’t,gt,{«%”(1’i) }zEW {%UD”) }1€W(P)U(; 041, L>
Note that if P; is not a wildcard then P; = ID; ; for some j € {1,...,n}. In our scheme, user only
needs to keep a secret and can store (b,c,d) in the public domain, that mean the user’s secret key
in our scheme is of constant size.

KeyDer(param, P’,skp): to generate the secret key skp = (a',b',c’,d’) for a pattern P' = (P{,..., P} ), {+
1 < L (note that P/, is not a dummy identity) and P'\ {P),,} €. P, from the secret key

//$

skp = (a,b,c,d), the algorithm picks 1" < Z,, and computes

Jj=0,...,

(d',b',c,d') = (g g g A BT Vi AA (D)™ Y i e L>

Note that ' = g*- ") = 4. g"" and the algorithm has g” from the param. In addition, since
P'\{P},,} €« P,wehave W(P') CW(P)U/+1, so from d and " the algorithm is able to generate
d'. Similarly, from ¢ and ¢ the algorithm is able to generate {.7(P/ )t+t/l}ieW(P)’ and from d and

¢" the algorithm is able to generate {7 (P/ )t+t”}l‘€W(Pl)\W(P), that means the algorithm is able to
generate ¢’.

It is easy to see that skp/ is in the right form with the new randomness ¢’ = ¢ +¢”, and user also
only needs to keep a’ secret.

78



WIBE with Constant-size Ciphertext and Secret Key Duong, Susilo and Trinh

Encrypt(param,P,.#) : to encrypt a message .# € Gr to a pattern P = (Py,...,P;), the algorithm first
randomly picks k € Z*, computes the ciphertext C = (Cy,C,,C3), where:

k
L
C=¢C=|g [] #®) [] #(Dio) | ,Cs=A-e(3,8)"
iEW(P) i={+1

Finally, it outputs C = (C;,C,,C3) which also includes the description of the pattern P =
(Pry....Pp).

Decrypt(skp,C,param) : assume that P = (Py,...,P) is the ciphertext pattern and P’ = (Pj,...,F;)
is the key pattern. The algorithm first checks that whether or not P’ ~ P, if not it returns L.
Otherwise, since P’ ~ P that means Vi,P/ = P, or P/ = x or P, = x, it is easy to see that ¢’ and d’
will contain {jf(l’i)f/}ieW(P) and {%”(IDI-_,O)’/)},‘L:HI, the algorithm hence first computes:

«_ C1d T # (P) TTiy1 7 (IDig)")
N e(b',Cy)

_ e(g, ¢ & Ticwip) 7 (P)" Tlizes1 # (IDip)")

kx
(& (& T, 2 (P Ty #(1Di0)F) )

=e(g,g

then recovers the message

M =C3/K

3.2 Security

Theorem 4. Assume that g > (n+ 1)L, our WIBE scheme is selectively secure under the Modified-q-
BDHE assumption.

Proof. Let . and &7 be adversaries who attack Modified-q-BDHE assumption and our WIBE scheme,
respectively. We will prove that .% can play the role of a simulator to simulate <7 and then rely on .2/’s
output to break the security of Modified-q-BDHE assumption.

First, &/ sends the target pattern P* = (P/,...,P}) to .. Note that .# also has an instance of
Modified-q-BDHE assumption, as well as the maximum number of levels L and the maximum number
of identities in each level n.

Setup: .& first considers a boolean formula with AND-gates:

P = (NP icwpy NAH(IDi0))i=er+1,...L
then uses the algorithm in Appendix G in [14] to build a LSSS matrix (M;.,p) from &2, where ¢ =
[W(P*)| +L—¢* (|W(P*)] is the cardinality of set W(P*)) and ¢,¢' < q.

Note that {W (P*)} U{¢* +1,...,L} = {p(i) }i=1.. ¢, p is an injective function.

% next chooses x' < Z;, and implicitly sets x = x’ +y4*!, generates e(g,g)* = e(g,g)xl e(g,8").

Denote hy = 7 (ID 1), hy = 7 (ID 2),...,hyy1 = H (ID2,),...,hy = F(IDr,»,),N = nL. Denote
hys1 = A(ID1o), ... hy+r = #(IDy)

To generate {h;}i—1 . n+r, - implicitly sets

_ 2 =1\ L 4
?_(}/7yya’}Iya"'aw ) EZ[)
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%
Let X =M - T be the vector shares, for all j =1,...,¢ we have

7Lj = Z Mj#")/yiil
]

it/
Y . o
Although . cannot compute A, .7 is able to find constants {@;}1<;<¢ satisfying:

;- A=Yy
i=1,..0

Note that, based on the property of LSSS matrix, .7 is able to find {®; } <</ satisfying (M; is row i
of matrix M)

or

It is then easy to deduce that

7777

On the other hand, . has g"yi,i =1,...,¢' from the assumption (note that ¢ > N = nL > {') and
matrix M, . thus can generate {/;};—, 1z by: first, for each i; where there exists i € [¢] satisfying

geeey

hj = (P; (l.)) or hj = 7 (IDy;)0) (P is an injective function), .# picks randomly scalar z; & Z, then
computes

hj = gY _gwi Yaee) Mia?y" _ g9 ,gyw;/li

We emphasize here the relation between indices i and j is that h; = (P} ;) or hj = #°(IDp ;) o)
Second, for each &, where there doesn’t exists i € [¢] satisfying h; = A (P} ;) orhj= A (1Dp;) 0),
. picks randomly scalar z; & Z,, then computes h; = g.
Since all z; are randomly chosen, hy,...,hy, are in the right form.
< eventually sets param as

param = (gngy?e(g?g)xahla cee ahN+L)

and sends it to <7, note that hy = 7 (ID) 1), hy = (ID 2), ..., hys1 = (IDy),...,hy = 7 (IDy,),N =
nL and hN—H = %([D]jo), e 7hN+L = %(IDL()).
Query phase 1: ¢ issues q1,...,gk, queries as follows:

1. < requests to know the secret key associated with the pattern P = (Py,...,P,) where P % P*;

2. of requests to know a part of the secret key associated with the pattern P = (P,...,P,) where
P =~ P*. The reason why & is able to make this query is that this part of the secret key is stored in
the public domain.

To answer the first one, . first finds the set of indices R’ such that Vi € R, (P # P) A (P # %) A (P* #
x), and sets R = R'U{¢*+1,...,v} (note that in case v < £* the set R = R'). Since P % P*, the set R # 0.
LetS= (W(P*)u{¢*+1,...,L})\R.

To be more clear, we give two examples corresponding to the cases v < ¢* and v > £*. Assume
P= (|D1’3, |D275,*, |D472, |D578) and P* = (|D172, |D275, |D374,>l<7 |D573, |D671). In this case, R=1and S =

2,3,5,6,7,...,L.
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For the second example, assume P = (1D 3,ID5 5, %,1D4 2,1Ds g,1Dg 1) and P* = (1D 3,1D2 5,1D3 4,%,IDs g).
In this case, R=6and § =1,2,3,5,7,8,...,L.

According to the well-known partition technique proof, we now need to program in such a way that
. can compute the secret key for P but cannot compute the secret key for P* (to avoid the trivial attack).

To this aim, .¥ constructs a vector i = (tyy...,up) € Z;‘f( where uy = —1 and Vi = 1,...,¢ where
p(i) € S, the product <7 -M;) = 0. We notice here that such vector exists due to the property of LSSS

matrix, . To continue, . picks r iz » then implicitly set:

t = r+u1yq+u2yq_1 +“_+W/yq—f’+1

Next, generates the secret key skp = (a,b,c,d):

GHl—i )
a=g"¢" [] " )i=g"g"
=20

Note that u; = —1, it is easy to see that the unknown term qu+| in g* is canceled out, since g contains
q+1
="' On the other hand, .% knows vector @, so he/she can generate:

b=g=g [] (" )"
i=1,..0

Next, . needs to compute ¢ = {J(F,)' },cyy(p). To this aim, for the set {F; # P },cjy(p) (that means
there doesn’t exists i’ € [/] satisfying 7 (B;) = A (P ))- note that identities in all level are different),
. knows z; such that h; = g% = JZ(P;), therefore .’ simply computes:

For the set {P; = P/ },cjy(p) (that means there exists ' € [{] satisfying J(P;) = (P5(i))). we have
from the setup phase that
H(P)=h;=g"- P Yoaepen My o 1"

- knows z; and computes
%(H)t _ (gl)Zj . g(r+u1yq+uzy‘1’l+~--+uﬂy‘1’ﬂ“)w[/ Yacpey My o, 1°

The key point for . to compute .7 (P,)" is that the product (# - M) = 0, that means . doesn’t
need to know the unknown term quﬂy. For other terms .7 has already known from the assumption.

Note that, in case v < £*, . cannot compute the secret key for P* since he/she cannot compute the
values

{A(P]) Yier
since (i -My) #0,p(i') = i. For the above first example, .7 cannot compute the value .7 (1D 5 ). That
is exactly the well-known partition technique proof.
Finally, . needs to compute
d = {%(lDi’j)t}iew(if)ui:»'+1‘...,L
J

=0,...,n

it is similar to the case of computing c.
Note that in case v > ¢£*, . cannot compute the secret key for P* since he/she cannot compute the
values

{A(IDi0) Yic e +1,...0)
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since ( -My) # 0,p (') = i. For the above second example, .# cannot compute the value .7 (IDg ).
That is exactly the well-known partition technique proof. '

To answer the second type of query, note that the unknown element g* only appear in a. However,
fortunately . just needs to provide to <7 the values (b,c,d), this leads to the fact that . can simply
picks ¢ & Zy, then generates (b,c,d) and returns to 7.

Challenge: The simulator . computes the challenge ciphertext C* = (C},C;,C;) as follows:

First, finds all the known values z; such that

* i i uqc[l! M; .y j i Ni
hj= A (Pyy) = g% - g et M — g gy

or
hj= %(IDp(z‘) 0) =g ‘gCOi):,ae[[/] Miavy* _ gy ,gyw,-/li

Let S’ be the set of all such above indices j. Note that S = {W(P*)}U{¢* +1,...,L},|S'| = ¢, and
the relation between indices i and j is that h; = %”(P;( )), or hj = J(IDp)0),i € [£], and we have

i

Yi—i. ¢@i-A; =7 from setup phase.

% computes (note that he/she knows g, g0 from the assumption)

k k
Ci = gk,C; _ (gk()’ﬂ}’)gijes/ kz_,-) - <gY. ngj . H gya),-/l,) = (gy H hj)

jes' i€/ jes'
k

L
= & [] 22F) [] (Do)
ieW(P*) =01

To compute C3, . first picks randomly a bit b € {0,1} and computes
C5 =My T-e(g",8)"

It is easy to see that in case T = e(g, g)yqﬂk then it is easy to see that Cj is in valid form. Otherwise,
C; is arandom element in Gr.

Query phase 2: &7 issues gk, +1,...,gk queries similarly to Phase 1

Guess: Eventually, o7 returns his/her bit guess b’ for b. . checks that if b’ = b, he/she outputs 0 to
guess that T = e(g, g)yﬁlk. Otherwise, . outputs 1, which means that 7 is a random element in Gr.

When T = e(g, g)quk the simulator . gives a perfect simulation so we have that

. 1
Pr|.s (Y, T =e(g.8)" ") =0| = 5te

When T is a random group element the message .#," is completely hidden from the adversary and
we have

Therefore, the simulator can play the Modified-q-BDHE game with non-negligible advantage (equal to
€) or she can break the security of Modified-q-BDHE assumption, which concludes our proof. O
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4 Performance Analysis

We give in the Table[I|the comparison table among our scheme and the scheme at ESORICS’18 as well
as some other relevant WIBE schemes proposed in the literature.

From this table, we see that only our scheme and the recent scheme at ESORICS’18 [11]] support
wildcard at KeyDer algorithm (generating secret key and delegating secret key). Regarding the storage,
user in our scheme only needs to store one element (about 170 bits) while user in other existing schemes
needs to store at least L elements (about L - 170 bits), where L is the maximum number of levels. In
addition, ciphertext size in our scheme is also shorter than ciphertext size in ESORICS’18 scheme (less
than one element). Regarding the computation complexity, only in our scheme both encryption time and
decryption time are independent to L (we omit the multiplication operation since it is very fast when
comparing to exponential operation and pairing operation). More precisely, at encryption step we need
3 exponential operations and at decryption step we need two paring operations. Overall, our scheme is
very suitable for lightweight device-based applications such as IoTs applications.

Two shortcomings of our scheme are the large public storage and the maximum number of identities
needs to be fixed at the setup. However, the former may not be big problems since the public parameters
may not need to be stored permanently on the client, and can be accessed on demand from a non-weak
server with large computational resources. Moreover, keys are typically much more smaller than the data
and/or its ciphertext in real-life scenarios.

Table 1: Comparison of WIBE schemes. Here L is the maximum number of levels, |sk| and |C| are
the secret key size and ciphertext size respectively, n is the length of an identity string, e is the time of
exponential operation, p is the time of pairing. In the scheme column for the WIBE schemes in [9]], we
include also the corresponding HIBE schemes. We note that multiplication operation is very fast when
we compare with the exponential operation and pairing operation, we thus omit it in the comparison
table.

Scheme | Wildcard use | Iskl ICl Decrypt | Encrypt
[9]+[6] Enc L+1 2L+2 L+p | (L+3)e+p
[O1+[7] Enc L+2 L+3 Le+2p | (L+3)e+p
[O]+[8]] Enc L+1 | (n+1)L+2 | (L+Dp | (L4+3)e+p
(1] Enc+KeyDer | 2L+3 4 Le+3p | (L4+3)e+p
Ours Enc+KeyDer 1 3 2p 3e

5 Conclusion

In this paper, we propose a novel technique to design an efficient wildcarded Identity-based Encryption
scheme, which improves the current most efficient one by Kim et al. [11] at ESORICS 2018. Our scheme
has constant size ciphertext (consisting of 3 group elements) and secret key (consisting of only 1 group
element), and fast decryption (computing two Parings). Our scheme can be transformed to obtain CCA
security using the transformations in [10] which utilized the CHK transformation [15]] and a transform of
Dent [16]. Two drawback of our scheme are that it requires larger public storage than existing schemes
and is not scalable. We will leave as a future work the problem on how to resolve such issues.

Despite that there have been several construction of HIBE [17, (18] and ABE [[19}20] from lattices, a
construction for lattice-based WIBE has not been yet available. We will leave this also as a future work.
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