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Abstract

After challenging the privacy guarantees of Bitcoin, a lot of alternatives have been proposed to en-
hance the privacy-properties of Bitcoin. While Zcash (one of such alternatives) significantly improves
the privacy of Bitcoin, its two-coin design with a public base-coin permits critical attacks to happen.
In this paper we propose Oscausi, an anonymous payment system that supports practical confidential
and anonymous transactions without a public basecoin nor a trusted setup. The scheme is inspired
by the Lelantus and MimbleWimble schemes, joining the ideas into one system, with a confiden-
tial basecoin and privacy through a shielded pool. Our proposal supports non-interactive transaction
aggregation across shielded and unshielded transactions. The scheme is built upon well-known cryp-
tography, is easily auditable and requires no trusted setup.
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1 Introduction

In 2008, the pseudonymous actor Satoshi Nakamoto published a new monetary system called Bit-
coin [38], a purely digital currency managed by a network of untrusted users (or nodes). Bitcoin ensures
computational integrity of each transaction taking place within the network, since those are subject to
re-evaluation by every node in the network. That is possible exactly because the full set of transaction
information is publicly available, limiting the privacy of the transaction history and of the system in
general [35, 25, 1, 17, 11, 33].

A variety of protocols has been proposed to combat this. Some of these protocols attempt to provide
a shield against attacks that exploit the graphs presenting transactions between network nodes, or the
P2P network itself, and vary from cryptographic schemes utilising zero-knowledge proofs and shielded
addresses to network propagation mechanisms that hide the IP-address of the transaction source. A brief
summary of those, borrowed from [26], is presented in Table 1; we note however, that this work will
only be relating to transaction graph approaches.

In particular, Monero [47] and Zcash (with its Zerocash implementation [3]) are perhaps among
the most popular of these protocols, utilising ring-confidential transactions [39] and Zero-Knowledge
Succinct Argument of Knowledge proofs (ZK-SNArKs) [3] respectively. Although Monero does not
rely on a trusted setup, it provides small anonymity-sets with substantial proofs [32, 37, 48, 49]. On
the other hand, Zcash provides ample anonymity-sets (232) with small proofs, but requires a trusted
setup and enforces privacy as an opt-in feature, with most transactions occurring on a Bitcoin-like public
coin[31]. Following the two-layer idea of Zcash, the Lelantus scheme [28], also provides privacy on top
of a public coin, but without the trusted setup. To contend privacy-by-choice, the scheme MimbleWimble
was introduced [41], which offers confidentiality by default without the enhanced anonymity of Zcash.
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One of the conclusions in [26] is that Zero-Knowledge systems offer a better chance of truly hiding
the relationship between sources and destinations of transactions than decoybased schemes. However,
the use of a trusted setup in a un-trusted environment is a problematic weakness that allows for possible
attacks. It has become apparent, therefore, the need of a practical scheme that ensures confidentiality and
anonymity, without the requirement of a trusted setup.

The goal of this paper is to fill the gap discussed in the previous paragraphs. Taking inspiration from
the privacy properties offered by Lelantus and MimbleWimble, we propose a variation of the Lelantus
scheme [28], which runs on top of the cryptocurrency scheme MimbleWimble [41], thereby working as a
second-layer privacy solution on top of the confidentiality provided by Pedersen commitments [40]. Our
proposal is enforced through primitives which supports non-interactive transaction aggregation across
shielded and unshielded transactions, thereby permitting joinsplit transactions. The scheme is built upon
well-known cryptography, is easily auditable and requires no trusted setup.

Paper Outline: In Section 2 we introduce the general notation used in the paper, as well as introduc-
tory knowledge of commitment schemes and zero-knowledge proofs utilised in our scheme. Section 3
and section 4 introduce the MimbleWimble and Lelantus, respectively. In section 5 we present the details
of our scheme, called Oscausi, which we validate in Section 6. Conclusive remarks and future directions
are highlighted in Section 7.

Method Objective Disadvantages Papers

Centralised Mixing Improve taint resistance
Require trust in a server. Limited
anonymity if low server usage.

[35, 7]

Decentralised Mixing Improve taint resistance
Limited anonymity-set. Coordination
with other participants, vulnerable to

DoS and sybil attacks.

[34, 43, 44,
42]

Non-interactive Mixing Improve taint resistance
Anonymity-set is limited in size, small

blocks provide bad anonymity.
[45, 41]

Coin Swapping Imrpove tain resistance
Require trust in the ”sender”, as he

can leak the true transaction.
[51]

Ring signatures Improve taint resistance
Limited anonymity-set. Rings can be

”pruned”.
[47, 19, 50,
37, 48, 49]

Stealth addresses Hide receiver
Participant need to check if they are
receiver of incoming transactions.

[50, 47]

Confidential transactions Hide amounts Requires proofs for verification. [47, 41, 40]

ZK-proofs Unlinkability
Computationally expensive to verify

in comparison to public (or SNArKS).
[8]

ZK-SNArKs Unlinkability
Requires a trusted setup, and stronger

assumptions.
[20, 15, 31, 3,

36, 21]
Dandelion(++) Hide IP Vulnerable to DoS and Sybil-attacks [5, 14]

Mixnets Hide IP Vulnerable to DoS and sybil-attacks.
[44, 42, 11,

30]
Tor & I2P Hide IP Vulnerable to Relative Reality attacks. [13, 33, 4]

Table 1: A summary overview of privacy-enhancing proposals against attacks exploiting analysis of
transaction graphs and P2P network analysis. Table extracted from [26]

2 Preliminaries

In this section we present the notation followed in the paper, as well as the preliminary theory of commit-
ment schemes and zero-knowledge proofs, which constitute the essential building blocks in our approach.
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2.1 General Notation

Let G denote a cyclic group of prime order p, Zp denote the ring of integers modulo p, and Z∗p be Zp\{0}.
Drawing a random element from Z∗p is then written ←$ Z∗p. Within the cyclic group G, generators are
denoted by g,h, j ∈G and elements by capital letters, e.g., C ∈G. A field element of the cyclic group is
denoted with a lower-case letter, e.g., a ∈ Zp. A proof is denoted by πtype = type(w,X), where w is the
witness for some commitment X . Let Zn

p and Gn be the vectorspaces of Zp and G respectively; then a
bold font is a vector, e.g., aaa ∈ Zn

p is a vector (a0, . . . ,an−1) ∈ Zp, g ∈ Gn a vector of generators etc. Let
H denote a hashfunction, acting as a random oracle [2]. Let σq be a signature with the private key q.

Further we let
?· denote an assertion that the relation · holds.

2.2 Commitment schemes

A commitment is a cryptographic primitive that allows a user to commit to a chosen value v in such a
manner that v is hidden until the user chooses to reveal it. This is done by utilising a random value r (also
known as the blinding factor), to create com(v,r), which is a commitment to v using r. By revealing
the opening (v,r), anybody can validate that v was indeed the value hidden by the commitment. The
commitment scheme we will use, must be hiding and binding.

Hiding: A commitment scheme is hiding if it does not reveal the value v. Let a probabilistic
polynomial-time algorithm A act as an adversary that generates two values, v0 and v1. Given a com-
mitment com to either v0 or v1, the adversary returns a = {0,1} such that com is the commitment of va.
If the commitment scheme enforces Equation 1 [24], then the adversary has a negligible advantage over
random guessing and the scheme is said to be hiding. If the probability in Eq. 1 is exactly 1

2 , the scheme
is said to be perfectly hiding, meaning that an adversary has no advantage over random guessing.

Pr [(v0,v1)←A ;a←$ {0,1} ;

C = com(va) : A (C) = a]≈ 1
2

(1)

Binding: A commitment scheme is binding if it can only open to one value v. Let us again assume
an adversary A that generates two openings (v0,r0) and (v1,r1), which open the same commitment. If
the probability of finding two such openings is negligible (see Equation 2), the commitment scheme is
said to be binding. If the probability of finding such two openings is exactly 0, the scheme is said to be
perfectly binding. Strongly binding is a commitment that can only be opened by one opening, i.e., to one
value v with one random factor r.

Pr [(v0,v1,r0,r1)←A : (v0) 6= (v1)

∧ com(v0,r0) = com(v1,r1)]≈ 0
(2)

Homomorphism: A commitment scheme is homomorphic if adding the commitments com(v0,r0)
and com(v1,r1), results in a commitment to com(v0 + v1,r0 + r1). In this paper, we use multiplicative
notation for adding commitments (see Equation 3)1 in order to distinguish between the commitment and
the field elements operations.

com(v0,r0)∗ com(v1,r1) = com(v0 + v1,r0 + r1) (3)

Nevertheless, we denote a “sum” of commitments to be derived as ∏
n−1
i=0 Ci, because it is equal to a

commitment to the sums of v’s and r’s, i.e., ∏
n−1
i=0 Ci = com

(
∑

n−1
i=0 vi,∑

n−1
i=0 ri

)
. Bluntly put, in our work,

adding commitments will be denoted by multiplicative operator, and subtracting by divisive.

1In the literature we also meet additive notation, com(v0,r0)+ com(v1,r1) = com(v0 + v1,r0 + r1) [9]
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Pedersen commitment: The Pedersen commitment scheme [40] is a homomorphic scheme that
is perfectly hiding and computationally binding, under the discrete log assumption. The scheme uses
generators within the cyclic group G, to provide commitments that are group-elements. The commitment
is straightforward and is computed as:.

com(v,r) = gv ∗hr (4)

The scheme can be extended to support commitments to vectors, by using a vector of generators g:

com(vvv;r) = gv0
0 ∗g

v1
1 ∗ · · · ∗g

vn−1
n−1 ∗h

r (5)

From Eq. 5, a double-blinded commitment [28] can be built as:

com(s,v,r) = gs ∗hv ∗ jr (6)

2.3 Zero-Knowledge Proofs

Informally, a zero-knowledge proof supports a Prover in convincing a Verifier about a statement (or
relation) R between a witness w and a commitment X without revealing the witness [22]. As an example,
a range proof [9] uses the public commitment V = com(v,γ) to prove that the value v is within a range
without disclosing it. The relation is seen in Equation 7.

R = {g,h,V ∈G;v,γ ∈ Zp | V = gv ∗hγ ∧ v ∈ [0,2n−1]} (7)

For such proofs to be zero-knowledge, they must satisfy the following properties [24]:

• Completeness: If the Prover knows the witness w for some commitment X where (w,X) ∈ R, the
Verifier must be convinced with probability 1. I.e., a valid proof will never be rejected by an honest
Verifier.

• Soundness: If (w,X) /∈ R, a Verifier that follows the protocol honestly will only be convinced
otherwise with negligible probability.

• Zero-Knowledge: If (w,X)∈R, and the Prover follows the protocol, the Verifier will learn nothing
more other than the fact that the statement holds.

An interactive protocol (or Σ-protocol) is a 3-move protocol [24] that supports zero-knowledge
proofs. These 3 moves are: i) an initial message with statements (or commitments) by the Prover,
ii) a challenge from the Verifier and iii) the Prover’s response based on the initial message and the Veri-
fier’s challenge. After this interaction, the Verifier can accept or reject the proof as convincing. Because
the Prover does not know what challenge the Verifier will pick, and has already committed to the values
within her proof, she will only be able to construct a valid proof if she indeed knows the witness w, or by
negligible chance. However, the interactive protocol is not fit for blockchain setting, as the Prover would
need to interact with every miner to convince them.

Consequently, the proof needs to be made non-interactive, i.e., we should be able to simulate the
Verifier. A transformation of the Σ-protocol into a non-interactive protocol is possible [16, 2] but out of
scope for this work.
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3 MimbleWimble

In this section, we introduce the MimbleWimble2 scheme [41], and elaborate on the nature of transaction
creation.

In the MimbleWimble protocol, an output is a Pedersen commitment [40] to a value v with a blinding
factor r, com(v,r) [41]. We denote a “source” as an unspent output, and a “destination” as a freshly
generated output. Because an output is merely a commitment, it includes no knowledge of the owner and
the values v and r cannot be extracted. An output can be used as a source by a user if it is unspent and
the user knows its opening (i.e., its value and blinding factor).

A transaction consists of a list of sources, a list of destinations and their range proofs, an excess (a
public key) and a signature of the transaction. The excess and signature are often referred to as the kernel
of a transaction. The excess is defined as the difference between the sum of the source and the sum of
the destination outputs3, i.e., excess =

∏
m−1
j=0 d j

∏
n−1
i=0 si

. An excess is a commitment to zero if and only if no value

is created or destroyed in the transaction, i.e., com(0,r).
The MimbleWimble blockchain supports non-interactive transaction aggregation. This means that a

block can be seen as one large transaction, hence a miner can non-interactively aggregate all the trans-
actions in the block. An aggregated transaction can be verified by verifying the kernels of the combined
transactions, and validating that the sum of the excesses is the difference in sums of combined sources
and destinations. Following the excess definition, an output included in both the sources and destina-
tions will counter itself and can be excluded. A block containing the transactions A→ B and B→C can
therefore prune the intermediate output B; this is called a “cut-through”.

Let πRP(d j) denote the range proof [9] proving that val(d j) ∈ [0,264− 1], where d j is a destination
and val(d j) its value. The transaction message, will then be defined as:

M = (s0, . . . ,sn−1;d0, . . . ,dm−1;

πRP(d0), . . . ,πRP(dm−1))
(8)

For the transaction to be valid, the following three properties must hold:

• Every destination must have a valid range proof.

• The sum of the transaction, defined as
∏

m−1
j=0 d j

∏
n−1
i=0 si

∗ excess must be a commitment to zero with zero

blinding [41], i.e., com(0,0).

• The signature of the transaction message must be valid and accepted if the excess is used as the
public key for validation.

By requiring the signature to be verified with the excess as public-key, we require the creator(s) of
the transaction to know all values and blinding factors, thereby proving ownership of the sources and
knowledge of the new destinations.

Since the outputs in MimbleWimble have no owner in the form of an address [41], transfers between
users cannot be performed in the traditional way. Let Alice and Bob be the sender and receiver respec-
tively in a transfer performed using the MimbleWimble protocol. For a valid transaction, they need to
prove that they together know all blinding factors, but none of them knows every term. For example,
Alice can prove that she knows the blinding factors of the sources, while Bob proves that he knows the
blinding factors of the destinations. As a result, the protocol ensures that no user can spend the funds

2MimbleWimble is a tongue-tying spell from the Harry Potter universe.
3Recall that we use multiplicative notation for commitments, subsection 2.2
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of another participant by altering the transaction, and due to the excess, no user can learn information
held by the other participants (e.g., Alice cannot learn the blinding factors of the destinations). Without
the excess, Alice could derive the openings of Bob, as the blinding factors must add up. For example, if
Alice has one source and two destinations, one destination being her change and the other being Bob’s,
she can derive Bob’s blinding factor4 by solving one equation with one unknown.

Recent implementations of the protocol5, use a Schnorr multisignature [46] for signing the transac-
tion message. The full structure of a MimbleWimble Transaction is presented in Protocol 1.

Alice(g,h,Ca ∈G;va,vc,vo,ra ∈ Zp) Bob(g,h ∈G) Public(utxo)
1 : a,rc←$Z∗p
2 : Ra = ga

3 : Cc = hvc ∗grc

4 : x = rc− ra

5 : X = gx Ca,Cc,X ,vo

b,rb←$Z∗p 6

Rb = gb,Pb = grb 7

Cb = hvo ∗grb 8

e = H (Ra ∗Rb||X ∗Pb) 9

Cb,Rb,sb,Pb,πRP(Cb) sb = b+ e∗ rb 10

11 : e = H (Ra ∗Rb||X ∗Pb)

12 : sa = a+ e∗ x

13 : s = sa + sb,R = Ra ∗Rb

14 : excess = X ∗Pb

excess,(s,R),Ca,Cb,Cc,πRP(Cb),πRP(Cc)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Ca
?
∈ utxo 15

excess ?
=

Cb ∗Cc

Ca
16

gs ?
= R∗ (excess)e 17

Verify(πRP(Cb),Cb)
?
= 1 18

Verify(πRP(Cc),Cc)
?
= 1 19

remove Ca from utxo 20

add Cb,Cc to utxo 21

Protocol 1: Building a MimbleWimble Transaction

On the one hand, this structure allows the participant to create a valid transaction. On the other hand,
it also allows an attacker to distinguish multiple aggregated transactions, by brute force on every possible
transaction and use of the excess for verification.To mitigate this issue, the excess is split into two parts,
namely excessnew and excess offset so that the following relation is satisfied:

excess = excessnew ∗gexcess offset (9)

4I.e., the blinding factor of Bob’s destination
5The Grin (https://grin.mw/) and Beam (https://beam.mw/) projects.
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Incorporating the offset in the original protocol requires simply a modification in line 16 of Protocol 1
to validate individual transactions. However, for aggregated transactions, only the sum of the offsets will
be stored, thereby making it infeasible to reconstruct and validate the individual transactions. Instead,
the excess of the aggregated transaction must be validated as a whole as seen in Equation 11.

offset = ∑(excess offset) (10)

∏(excessnew)∗goffset =
∏d∈destinations(d)

∏s∈sources(s)
(11)

With regards to non-interactive transactions, Fuchsbauer et al. [18] note that those can be performed
by having one party of a transfer generate a full transaction, and then pass this along with the opening of
one destination to the other party. The receiving party will then create a transaction with the opening and
its destination as a source, and a new destination of the same value but a different blinding factor. By
aggregating the two transactions and performing cut-through the receiver has a valid transaction, similar
to the interactive scheme, with an additional kernel.

4 Lelantus

In this section we introduce Lelantus6 One-Out-Of-Many proofs (OOOM for short)[28], a scheme that
allows a prover to prove knowledge of a source without disclosing the openings nor the specific used
source. First, we provide an overview of the system as a whole, and then describe the Lelantus proof.

The system builds on a two-coin basis, a base-coin and a shielded pool. For intuition, let us consider
a fully public base currency where each coin is owned by some address and a pool of shielded checks.
A shielded check is a double-blinded commitment com(s,v,r), blinding the value v using the blinding
factors r and s. To make transfers anonymous, we can mint a fresh check by burning owned base currency.
The One-Out-Of-Many proofs allows us to prove that we own a check with serial number s, and spend
the hidden value by publishing s without directly pointing at the check as a source, but merely proving
that the check is within a large set of checks (anonymity set). By picking such sets to be large enough,
linking a source check to a destination becomes infeasible. For example, Lelantus proposes anonymity
sets of size 216 as a practical size7. Storing the full set of shielded checks, as well as the used serial
numbers on the Blockchain offers protection against double-spending.

The One-Out-Of-Many proof that is used in Lelantus is inspired by [24], but has some differences.
For example, the Lelantus One-Out-Of-Many scheme proves that a zero-opening of a double-blinded
commitment, i.e., com(0,v,r), as opposed to an ordinary zero-commitment com(0,r), is known by the
Prover. Lelantus thus offers anonymity, without requiring the anonymity-set to contain checks of equal
denominator[28]. Without the double-blinding, multiple pools of varying denominators were needed.
Furthermore, without the anonymity sets of checks with equal denominator, it would be trivial to track
unique amounts.

In terms of performance, Lelantus supports proofs with anonymity-set size 216 (1567 bytes), gener-
ated in 5253 ms and verified in 947 ms. While this verification may seem slow, it accounts for a single
proof; multiple proofs can be verified in batches, using 35.6 ms per proof when batching 1000 proofs.
Therefore, Lelantus is suitable for anonymity-solutions without a trusted setup.

4.1 The Lelantus Proof

Here we present the One-Out-Of-Many (OOOM) proof. To begin with, the following notation is in place.

6A Titan in Greek mythology who was moving unseen
7Verification is possible in 35 ms with a size of 1.5 KB [28].
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Let clist be a set of unspent public coins, which link an amount with an owner; i.e., if (v,P) is a set
item, v is the unspent value and P is the public key that owns it. Next, let CMList be the set of shielded
checks and spent the set of spent serial numbers. Note that these can be stored in a public blockchain
as shared immutable truth. Equation 12 gives the content of the blockchain, where N = |CMList|,
Nclist = |clist| and Nspent = |spent|. Generators shared among the peers are also included in the BC
content.

BC =
(
g,h, j ∈G;clist ∈ ZNclist

p ×GNclist ;

CMList ∈GN ;spent ∈ ZNspent
p

) (12)

Let the set of commitments (C0, . . . ,CN−1) be stored in an n-ary tree (i.e., the CMList), where the
leaves of the tree are the commitments and m is the height of the tree. Then, N = nm is the total number
of commitments within the tree. Let C` = com(0,v,r) be the zero commitment and δ`,i be Kronecker’s
delta, where the function returns 1 if `= i and 0 otherwise.

To prove knowledge of C` we could simply disclose `, and let the Verifier calculate the commitment
Cv = ∏

N−1
i=0 Cδ`,i

i , which will be equal to C`. Obviously, neither ` nor C` are hidden. Following common
practice within the field of Zero-Knowledge, we replace a leaking function (δ`,i) with a blinding function
that relies on random noise and some challenge x. Let a j,i be a randomly sampled element from Zp, and
x be the challenge provided by the Verifier. The blinding function f j,k is then defined as in Equation 13.

f j,k =

{
δ` j,k ∗ x−a j,k if k = 0
δ` j,k ∗ x+a j,k otherwise

(13)

Note that k is a value in [0,n−1] and not an index in [0,N−1]. By using the blinding function f , Cv is

updated to Cv = ∏
N−1
i=0 C

∏
m−1
j=0 f j,i j (x)

i . The exponent ∏
m−1
j=0 f j,i j(x), can be written as a polynomial pi(x), as

in Equation 14. We note that only the polynomial p`(x) will be of order m, with every other polynomial
being of order m−1, as xm will only be included in pi when `= i, due to the δ`,i term.

pi(x) =
m−1

∏
j=0

f j,i j(x)

=
m−1

∏
j=0

(δ` j,i j ∗ x±a j,i j)

=
m−1

∏
j=0

(δ` j,i j ∗ x)+
m−1

∑
k=0

pi,k ∗ xk

= δ`,i ∗ xm +
m−1

∑
k=0

pi,k ∗ xk

(14)

While everyone with possession of the f j,k values can evaluate the polynomials at x, the underlying
polynomials are known only by the Prover. Therefore, the Prover can construct a counter-argument8

which, when multiplied with Cv, will nullify every non m-order term of the evaluation. In order to avoid
leaking C`, the Prover must add an offset to the nullifier in this fashion: Cv∗“counter-argument” becomes
C` ∗ com(0,voffset,roffset) instead of C`. Because the Prover has knowledge of the offset, she can prove
knowledge of the openings of C`.

8In Protocol 2, the counter-argument is ∏
m−1
k=0 (Gk ∗Qk)

−xk
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This scheme is a Σ-protocol (introduced earlier), which ensures that it can be made non-interactive
(and thereby usable in a blockchain setting) by use of the Fiat-Shamir heuristics [16]. The relation proved
by the One-Out-Of-Many proofs is expressed in Equation 15. The protocol is presented in Protocol 2
and the reader is referred to [28] for more details.

R = {(C0, . . . ,CN−1),(`,v,r) | ∀i : Ci ∈G
∧ ` ∈ {0, . . . ,N−1}∧ v,r ∈ Zp

∧C` = com(0,v,r) }
(15)

Prover(g,h, j ∈G;CCC ∈GN ;`,v,r ∈ Zp) Verifier(g,h, j ∈G;CCC ∈GN)

1 : rA,rB,rC,rD←$Z∗p
2 : ∀ j ∈ [0, . . . ,m−1]
3 : a j,1, . . . ,a j,n−1←$Z∗p

4 : a j,0 =−
n−1

∑
i=1

a j,i

5 : A = com(a0,0, . . . ,am−1,n−1;rA)

6 : B = com
(
δ`0,0, . . . ,δ`m−1,n−1;rB

)
7 : C = com

({
a j,i ∗ (1−2∗δ` j ,i)

}m−1,n−1

j,i=0
;rC

)
8 : D = com

(
−a2

0,0, . . . ,−a2
m−1,n−1;rD

)
9 : ∀k ∈ [0, . . . ,m−1]

10 : ρk,τk,γk←$Z∗p

11 : Gk =
N−1

∏
i=0

C
Pi,k
i ∗ j

−γk

12 : Qk = jγk ∗ com(0,ρk,τk)
A,B,C,D,

{Gk,Qk}m−1
k=0

13 : ∀ j ∈ [0, . . . ,m−1],∀i ∈ [1, . . . ,n−1] x←$Z∗p

14 : f j,i = δ` j ,i ∗ x+a j,i

15 : zA = rB ∗ x+ rA

16 : zC = rC ∗ x+ rD

17 : zV = v∗ xm−
m−1

∑
k=0

ρk ∗ xk

18 : zR = r ∗ xm−
m−1

∑
k=0

τk ∗ xk
zA,zC,zV ,zR,

f0,1, . . . , fm−1,n−1
∀ j : f j,o = x−

n−1

∑
i=1

f j,i 19

Bx ∗A ?
= com( f0,0, . . . , fm−1,n−1;zA) 20

Cx ∗D ?
= com

({
f j,i(x− f j,i)

}m−1,n−1
j,i=0 ;zC

)
21

com(0,zV ,zR)
?
=

N−1

∏
i=0

C
∏

m−1
j=0 f j,i j

i ∗
m−1

∏
k=0

(Gk ∗Qk)
−xk
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Protocol 2: One-Out-Of-Many proofs, relation R (Equation 15)

Within the proof detailed in Protocol 2, some design-choices might be non-obvious. First, it may not
be clear why f j,0 is not passed to the Verifier; recall that this is done in order to limit the data that is to
be transferred by m elements, as by the definition f j,0 can be derived from f j,i for i > 0. Furthermore,
it may not be clear why Gk and Qk exist individually, as they could simply be combined into one term
and the One-Out-Of-Many proof would still be validated correctly. However, as com(0,ρk,τk) in Qk is
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used to prove that no value is generated or lost, the separation of the terms facilitates the proof while still
hiding C` through an offset γ .

5 Design of Oscausi System

In this section we present the details of our proposed system, called Oscausi. Our scheme gets inspiration
and builds on top of MimbleWimble and Lelantus, on the following basis. The straightforward nature of
MimbleWimble makes it hard for an attacker to gain any knowledge without participating in the network.
However, if an attacker were to observe the network, they could construct the transaction graph that links
sources with destinations. Lelantus addresses this issue. Contrarily to Lelantus, which uses a public and
transparent base-coin, Oscausi will adopt the commitments from MimbleWimble. On top of this, our
system will also support the non-interactive aggregation of transactions from MimbleWimble.

The Oscausi system9 is designed on a per output basis and introduces primitives which can be used
to move between MimbleWimble and Lelantus outputs, while still supporting the original structure of
the MimbleWimble transaction, i.e., sources, destinations and a kernel. The two primitives introduced
by Oscausi are Minting and Spending, modified from the respective operations in the Lelantus scheme.
Minting will be used whenever we have a shielded destination and Spending for shielded sources. Be-
cause of these primitives JoinSplit is not directly built into the system, but is supported by combining
Minting, Spending and ordinary MimbleWimble trasnactions. We present Minting, Spending and Join-
Split in Oscausi in more detail in the following subsections.

Before that, and since we are presenting a setting where also the public coin is confidential (and there-
fore enforced as commitments), we define the set of unspent public coins as CList and the blockchain
content as in Equation 16.

BC =
(
g,h, j ∈G;CList ∈GNCList ;

CMList ∈GN ;spent ∈ ZNspent
p

) (16)

5.1 Minting

Minting a coin is the action of taking a coin from a base-currency, and creating a shielded version of it
while destroying the original, i.e., the action of moving a coin to a shielded pool. Let C = hv ∗ jri be a
MimbleWimble output, which a user wishes to use as a source for her transaction, and D = gs ∗ hv ∗ jro

be the double-blinded check in the pool. For the mint to be valid, the user must prove that i) she knows
the openings of C i.e., she is an eligible spender, and ii) that the destination D does not create or destroy
value. Luckily, this can be done by providing Generalised Schnorr Proofs. A generalised Schnorr proof
proves knowledge of the solution to a double discrete logarithm problem [28], i.e., proves knowledge of
the openings to a Pedersen Commitment [40]. Furthermore, as the proof is zero-knowledge, the prover
may do so for a commitment A = gs ∗ jr without disclosing s or r. The relation is shown in Equation 17
and the generalised Schnorr proof is presented in Protocol 3.

R = {g, j,A ∈G;s,r ∈ Zp | A = gs ∗ jr} (17)

For minting, in particular, two generalised Schnorr proofs are required; one should use the generators
g, j (proving no hidden value) and the other the generators h, j (proving no hidden serial number). Then,
a user must first prove that she knows the opening of C using the generators h, j and then prove that the

9https://github.com/LHerskind/ConfidentialTransactions/tree/master/src/main/java/Lasse_Herskind
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Prover(g, j,A ∈G;s,r ∈ Zp) Verifier(g, j,A ∈G)

1 : s0, t0←$Z∗p

2 : T = gs0 ∗ jt0 ∈G T

3 : s1 = s0 + s∗ x ∈ Zp
x←$Z∗p

4 : t1 = t0 + r ∗ x ∈ Zp
S = gs1 ∗ jt1 ∈G S ?

= Ax ∗T

Protocol 3: Generalised Schnorr proof of the relation R as defined in Equation 17

difference between C and D is of the form gs ∗ jr, i.e., not hiding any value. The scheme is shown in
Protocol 4. Minting a shielded coin can be written as a tuple in the following way:

txmint = (πGSPg,j ,πGSPh,j
,D,C) (18)

Because the knowledge of q of the shielded check is not used before spending, it is possible to mint

Prover(C ∈G;v,ri ∈ Zp;BC) Verifier(BC)
1 : q,ro←$Zp

2 : P = gq

3 : s = H (P)

4 : D = gs ∗hv ∗ jro

5 : r = ro− ri

6 : πGSPh,j = GSPh,j((v,ri),C)

7 : πGSPg,j = GSPg,j

(
(s,r),

D
C

)
πGSPh,j ,πGSPg,j ,D,C C

?
∈ CList 8

Verify
(

πGSPh,j ,C
)

?
= 1 9

excess =
D
C

10

Verify
(

πGSPg,j ,excess
)

?
= 1 11

remove C from CList 12

add D to CMList 13

Protocol 4: Minting a shielded check (double-blinded pedersen commitment) D from a ordinary Pedersen
commitment C.

directly into another users account. Such can be done following the ideas presented in the Lelantus paper
[28], and the followup [29], and will not be explored further in this work.

5.2 Spending

Spending a shielded check is harder than minting it. For a spending to be valid, it must satisfy three
properties:

i) every shielded source is unspent, and owned by the spender;

ii) every destination is non-negative, and hides no serial number;
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iii) no value is generated or destroyed in the transaction.

The first property is the hardest to satisfy. Assume that we have a list CMlist of the shielded commit-
ments, and that we have the indexes and private information of the checks we are to spend (i.e., `,q,v,r
for each check). We remind the reader that a commitment in CMlist is of the form com(s,v,r) or else
written: gs ∗hv ∗ jr (i.e., there are no zero-commitments). Let us assume that a Prover publishes P = gq

of a shielded check, allowing anyone to derive the serial number s = H (P). Then, the Prover derives a
new set of commitments CMlist′ where C′i =

Ci
gs . In CMlist′, the commitment C′` will be a commitment

to zero; the Prover can, therefore, use a One-Out-Of-Many proof to prove that she knows the opening of
a commitment within the set CMlist′, without disclosing it. To protect against double-spending, every
spent serial number needs to be stored and any transactions that attempt to use an already spent serial
number will be rejected. The Prover can prove ownership of the serial number by signing with the
private-key q.

By utilising range proofs for Pedersen commitments (Equation 7), the second property is satisfied. To
address the third property, we need to modify the scheme to accommodate the MimbleWimble scheme.
Recall from section 3 that the MimbleWimble scheme utilises a kernel to prove that no value is generated
or lost. Also, the excess (a public key) of this kernel is derived from the sources and destinations of the
transaction. However, Lelantus’ purpose is to hide the sources; therefore including them here would
defeat the purpose of the scheme. Alternatively, we utilise values from the One-Out-Of-Many proof to
derive a “decoy”-source, which can take the place of the source. These sources can then be derived as in
Equation 19.

Si = hzV,i ∗ jzR,i ∗
m−1

∏
k=0

Qxk

i,k (19)

The excess (Equation 20) can then be derived by using the “sources” S and the destinations C simi-
larly to a MimbleWimble setting, with a modification to the destinations, countering the xm exponent of
the sources.

excess =
∏

l−1
j=0Cxm

j

∏
n−1
i=0 Si

(20)

Observe that only the Prover is capable of generating a valid signature with the excess as a public key.
The main issue here is that we must be able to link the destination to the actual transaction, due to the xm

term being unique to the transaction. The updated spending is presented in Protocol 5.

5.3 JoinSplit

A Joinsplit transaction takes a positive number of shielded coins as sources, and a non-negative number
of freshly generated shielded outputs as destinations. Extraction of a non-negative value from the pool is
also supported.

In our scheme, JoinSplit is not implemented as an independent action (as in Lelantus), but by using
Minting, Spending and the ordinary MimbleWimble transactions. We do this in order to follow the
MimbleWimble structure, a set of sources and destinations and to support aggregation of transaction-
primitives. In essence, the end result is similar to the JoinSplit in Lelantus.

For example, let us consider a transaction in which a user holds a shielded coin D = com(sd ,25,rd)
and a MimbleWimble output C = com(0,10,rc). The user wants to create a transaction, where the output
is a shielded coin E = com(se,30,re), and a MimbleWimble output F = com(0,5,r f ). To achieve this,
we create three different transactions and then aggregate them to one larger transaction, as follows:
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Prover(`̀̀ ∈ [0,N−1]n;qqq,vvv,rrr ∈ Zn
p; v̂vv, r̂rr ∈ Zl

p;BC) Verifier(BC)

1 : ∀i ∈ [0,n−1]
2 : Pi = gqi , si = H (Pi)

3 : ∀ j ∈ [0,N−1]

4 : CMList′j =
CMList j

gsi

5 : wi = (`i,vi,ri)

6 : πOOOMi = OOOM(wi,CMList′)
{Ai,Bi,Ci,Di,QQQi,GGGi}n−1

i=0

x←${0,1}λ

7 : γγγ i = πOOOMi,γ

8 : ∀ j ∈ [0, l−1]

9 : C j = hv̂ j ∗ jr̂ j

10 : πRP j = RP((v̂ j, r̂ j),C j)

11 : e =
l−1

∑
j=0

(r̂ j ∗ xm)−
n−1

∑
i=0

(
ri ∗ xm +

m−1

∑
k=0

γi,k ∗ xk

)
πππOOOM,πππRP,σe,σσσqqq,PPP,CCC t spent = /0 12

∀i ∈ [0, l−1] 13

Verify(πRPi ,Ci)
?
= 1 14

∀i ∈ [0,n−1] 15

si = H (Pi) 16

si /∈ spent∪ t spent ?
= 1 17

add si to t spent 18

Verify(σqi ,Pi)
?
= 1, QQQ = πOOOMi,QQQ 19

zV = πOOOMi,zV
, zR = πOOOMi,zR

20

Si = hzV ∗ jzR ∗
m−1

∏
k=0

Qxk

k 21

∀ j ∈ [0,N−1] 22

CMList′j =
CMList j

gsi
23

Verify(πOOOMi ,CMList′) ?
= 1 24

excess =
∏

l−1
j=0 Cxm

j

∏
n−1
i=0 Si

25

Verify(σe,excess) ?
= 1 26

add t spent to spent 27

add CCC to CList

Protocol 5: Spending multiple shielded coins in the Oscausi scheme.

Transaction 1, will be a spending of the shielded coin, D, generating a MimbleWimble destination
A = com(0,25,ra). Transaction 2, will use A and C as sources to an ordinary MimbleWimble transaction,
and generate the two MimbleWimble outputs: B = com(0,30,rb) and F . Transaction 3, will then mint
the shielded coin E from a MimbleWimble coin B.

The flow of outputs can be expressed as (D) → (A), (A, C) → (B, F), (B) → (E), which can be
combined as (D, A, C, B)→ (A, B, F, E) and reduced to (D, C)→ (E, F). Recall however that the coins
going directly into, or out from, Lelantus cannot just be removed, as they are also included in the proof
or act as coinbases; some knowledge will be retained. This new transaction will be valid if the individual
proofs and signatures are valid, and the summed excess, i.e., the difference between (D, C) and (E, F),
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is equal to the public commitments of proofs combined.Since the excess of the Lelantus-MimbleWimble
transactions is directly linked to the proofs and outputs, it is not necessary to include an offset.

5.4 Improved Proof Verification Time

Through a series of modifications, we can use the slightly faster original One-Out-Of-Many proofs by
Groth [24] instead of the Lelantus version (proof not included here). Recall that the simpler proof by
Groth [24] proves knowledge of the openings to a commiment com(0,r) and not to com(0,v,r) as we
do. We note, further, that from an algebraic point of view, com(0,r) = com(0,0,r). To ensure that
one element in the set will have this structure, it is not enough to counter gs. Let C = com(v,ro) be a
MimbleWimble output, where v is the same values as with the shielded coin, and ro is randomly picked.
To spend a shielded coin, we publish s = H (gq), a signature with q, and C. We then derive CMList′ as
CMList′j =

CMList j
gs∗C , thereby the coin to spend becomes com(0,0,r− ro), and the spender can prove that

she knows the openings with the original One-Out-Of-Many proof [24]. The output C will then be the
destination of the transaction and can be spent as a source in a future MimbleWimble transaction. This
will however mean that spending would be one shielded output to one MimbleWimble output action (as
opposed to many-to-many, where by many we assume ≥ 1).

6 Validation

In this section, we evaluate the proposed Zero-Knowledge scheme. First, we evaluate how well the design
fits in with the principles of the MimbleWimble proposal. Secondly, we compare the anonymity properties
of our scheme with well-known currencies, as Bitcoin, Monero and Zcash. Finally, we compare our
proposal with the Lelantus MimbleWimble proposal by Beam10.

MimbleWimble Support: As described in section 5, by modifying the Lelantus protocol we man-
aged to support confidential outputs as a source for minting shielded coins which can be used for anony-
mous spending. Our scheme locks onto MimbleWimble and allows transaction-aggregation as in “nor-
mal” transactions, however, with the limitation that it is not possible to perform cut-throughs on outputs
that are either a source or a destination in an anonymous transaction. While the lack of cut-throughs
does not impact the soundness of the MimbleWimble system, it does impact the ability to aggressively
prune the system. Without the ability to massively prune, our proposed scheme does not closely follow
the ethos of MimbleWimble.

Anonymity properties: As shown in related works ([35, 25, 1, 17, 11, 33]) Bitcoin provided no
anonymity beyond simply pseudonyms, and could easily be broken and analysed by an attacker. As
analysed in [26], the main issue is that the transaction graph is fully public and thereby can be analysed
by anyone. Furthermore, the system permits users to utilise the same addresses multiple times, increas-
ing thus the links between transactions. Our proposed system removes entirely the notion of address,
obfuscates the transaction graph and supports zero-knowledge transactions which allows no information
to be leaked to the transaction graph. However, transactions require more storage and computation and
may not be as accessible as Bitcoin due to the interactive nature of the scheme.

Because our system’s anonymity is derived from Lelantus [28], it provides larger anonymity-set sizes
than Monero (216 instead of 11), with smaller proof size (1.5 KB vs. 2.1 KB [28]) and verification time
(35 ms vs. 47 ms [28]).

While being a significant improvement for anonymity over Monero, our solution cannot compete
with Zcash [3], which supports an anonymity set of size 232, with unbeatable size and verification time
(192 bytes and 8 ms [27, 10, 23, 28]). However, our solution does not rely on the trusted setup nor

10https://github.com/BeamMW/beam/wiki/Lelantus-MW
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“complicated and un-auditable” cryptography, enabling it to be broader and more easily adopted than
ZK-SNArKs.

An overview of the properties and efficiency for Oscausi and other privacy solutions is visible from
Table 2.

Basecoin
Anonymity

Set Size
Trusted
Setup

Cryptographic
Assumptions

Proof
Size (KB)

Proof Time
(s)

Verification
Time (ms)

Monero None 11 No Well-tested 2.1 1 47

Zcash Public 232 Yes
Relatively

New
0.2 1-20 8

Lelantus Public 216 No Well-tested 1.5 5.2 351

Oscausi Confidential 216 No Well-tested 1.5 5.2 352

1 Average cost of verifying a proof computed by batch-verifying 1000 proofs [28]
2 Utilising the Lelantus OOOM proof with same batch-verification.

Table 2: Security properties and efficiency for privacy solutions, extracted from Lelantus [28] and ex-
tended with the type of basecoin and updated for Monero anoymity set size and Zcash Sapling upgrade.

Comparison with Beam: The team of Beam has looked into a Lelantus-MimbleWimble system11.
While the information provided by the Beam team is currently limited to blog-posts and their GitHub,
we have discussed the Beam scheme with Vladislav Gelfer12 during the Amsterdam ZK-Proof 2019
event. The implementation of Beam follows the possible improvement as described in subsection 5.4 and
utilises the simpler One-Out-Of-Many proof by Groth [24] to support spending. Although this difference
seems minor, it alters the system in such a manner that spending must be performed individually, i.e.,
every shielded coin must be extracted to a coin, and can then be combined afterwards. Our system
supports spending of n shielded coins and retrieving m different coins as long as no value is generated
or destroyed. This difference gives the Beam version a slight edge on the performance of the proofs,
however, it requires additional steps to combine the extracted coins. In comparison, our system supports
direct transfer to one destination. Because the destinations of a spending cannot be pruned, Beam requires
additional storage on-chain which raises a trade-off issue between performance and required memory.

7 Conclusive Remarks

In this work, we have presented a trustless second-layer zero-knowledge scheme, which supports good
anonymity through large anonymity-sets (216), while still being practical in a Blockchain setting, due to
batch-verification and small memory footprint. Our scheme is built on Lelantus and designed to operate
on top of the cryptocurrency scheme MimbleWimble, which supports confidential transactions through
homomorphic commitment schemes and can easily be modified to support other currencies that are also
based on homomorphic commitments schemes, e.g., Monero. The scheme pays for privacy through
sacrificing storage, as it does not support pruning of the shielded outputs.

A number of issues remain open for further research. First, batching of the One-Out-Of-Many proofs
is an interesting subject to explore, as multiple proofs will often occur within the same spending, and
batching could lead to both performance and storage improvements. Recently, Benjamin E. Diamond
presented Many-Out-Of-Many proofs [12] based on the original OOOM [24], providing a great stepping
stone for the specialized OOOM proofs used in Lelantus and Oscausi. Next, performing cut-throughs

11https://github.com/BeamMW/beam/wiki/Lelantus-MW
12Developer at Beam, https://beam.mw/team
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on shielded outputs in such a manner that it will not impact anonymity is an interesting research direc-
tion, especially within the MimbleWimble community. Last but not least, the use of the BLS signature
scheme [6] should be explored, as the scheme could support aggregation of signatures for the Mim-
bleWimble transactions, as well as the signatures proving ownership of the shielded sources in Oscausi.
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