Skip to main content

Advertisement

Log in

Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The microphytobenthos consists of unicellular eukaryotic algae and cyanobacteria that grow within the upper several millimeters of illuminated sediments, typically appearing only as a subtle brownish or greenish shading. The surficial layer of the sediment is a zone of intense microbial and geochemical activity and of considerable physical reworking. In many shallow ecosystems, the biomass of benthic microalgae often exceeds that of the phytoplankton in the overlying waters. Direct comparison of the abundance of benthic and suspended microalgae is complicated by the means used to measure biomass and by the vertical and horizontal distribution of the microphytobenthos in the sediment. Where biomass has been estimated as chlorophyll a, there may be negligible to large (40%) error due to interference by degradation products, except where chlorophyll is measured by high-performance liquid chromatography. The vertical distribution of microphytobenthos, aside from mat-forming species, is determined by the opposing effects of their vertical migration, which tends to concentrate them near the surface, and physical mixing by overlying currents, which tends to cause an even vertical distribution through the mixed layer of sediment. Uncertainties in vertical distribution are compounded by frequently patchy horizontal distribution. Under-sampling on small (<1 m) scales can lead to errors in the estimate that are comparable to the ranges of seasonal and geographic variation. These uncertainties are compounded by biases in the techniques used to estimate production by the microphytobenthos. In most environments studied, biomass (as chlorophyll a) and light availability appear to be the principal determinants of benthic primary production. The effect of variable light intensities on integral production can be described by a functional response curve. When normalized to the chlorophyll content of the surficial sediment, the residual variation in the data described by the functional response curve is due to changes in the chlorophyll-specific response to irradiance. Production by the benthos is often a significant fraction of production in the water column and microphytobenthos may contribute directly to water column production when they are resuspended. Thus on both the basis of biomass and biogeochemical reactivity, benthic microalgae play significant roles in system productivity and trophic dynamics, as well as such habitat characteristics as sediment stability. *** DIRECT SUPPORT *** A01BY074 00003

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Admiraal, W. and H. Peletier. 1980. Influence of seasonal variations of temperature and light on the growth rate of cultures and natural populations of intertidal diatoms. Marine Ecology Progress Series 2:35–43.

    Google Scholar 

  • Admiraal, W., H. Peletier, and T. Brouwer. 1984. The seasonal succession patterns of diatom species on an intertidal mudflat: An experimental analysis. Oikos 42:30–40.

    Google Scholar 

  • Admiraal, W., H. Peletier, and H. Zomer. 1982. Observations and experiments on the population dynamics of epipelic diatoms of an estuarine mudflat. Estuarine Coastal and Shelf Science 14:471–487.

    Google Scholar 

  • Anderson, F. E. 1976. Rapid settling rates observed in sediments resuspended by boat waves over a tidal flat. Netherlands Journal of Sea Research 10:44–58.

    Google Scholar 

  • Antoine, S. E. and K. Benson-Evans. 1985. The epipelic algal flora of the River Wye system, Wales, U.K. I. Productivity and total biomass dynamics. Internationale Ruvue der gesamten Hydrobiologie 70:575–589.

    Google Scholar 

  • Arfi, R., D. Guiral, and M. Bouvy. 1993. Wind induced resuspension in a shallow tropical lagoon. Estuarine Coastal and shelf Science 36:587–604.

    CAS  Google Scholar 

  • Baillie, P. W. 1986. Oxygenation of intertidal estuarine sediments by benthic microalgal photosynthesis. Estuarine coastal and Shelf Science 22:143–159.

    CAS  Google Scholar 

  • Baillie, P. W. 1987. Diatom size distributions and community stratification in estuarine intertidal sediments. Estuarine Coastal and shelf Science 25:193–209.

    Google Scholar 

  • Baillie, P. W. and B. L. Welsh. 1980. The effect of tidal resuspension on the distribution of intertidal epipelic algae in an estuary. Estuarine and Coastal Shelf Science 10:165–180.

    Google Scholar 

  • Brown, L. M., B. T. Hargrave, and M. D. MacKinnon. 1981. Analysis of chlorophyll a in sediments by high-pressure liquid chromatography. Canadian Journal of Fisheries and Aquatic Science 38:205–214.

    CAS  Google Scholar 

  • Burnett, F. H. 1962. The Secret Garden. Lippincott, Philadelphia.

    Google Scholar 

  • Cadée, G. C. and J. Hegeman. 1974. Primary production of the benthic microglora living on tidal flats in the Dutch Wadden Sea. Netherlands Journal of Sea Research 8:260–291.

    Google Scholar 

  • Cadée, G. C. and J. Hegeman. 1977. Distribution of primary production of the benthic microflora and accumulation of organic matter on a tidal flat area, Balgzand, Dutch Wadden Sea. Netherlands Journal of Sea Research 11:24–41.

    Google Scholar 

  • Cahoon, L. B., G. B. Beretich, C. J. Thomas, and A. M. McDonald. 1993. Benthic microalgal production at Stellwagen Bank, Massachusetts Bay, USA. Marine Ecology Progress Series 102:179–185.

    Google Scholar 

  • Cahoon, L. B. and J. E. Cooke. 1992. Benthic microalgal production in Onslow Bay, North Carolina, USA. Marine Ecology Progress Series 84:185–196.

    Google Scholar 

  • Cahoon, L. H. and R. A. Laws. 1993. Benthic diatoms from the North Carolina continental shelf: Inner and mid shelf. Journal of Phycology 29:257–263.

    Google Scholar 

  • Cahoon, L. B., R. S. Redman, and C. R. Tronzo. 1990. Benthic microalgal biomass in sediments of Onslow Bay, North Carolina. Estuarine Coastal and Shelf Science 31:805–816.

    Google Scholar 

  • Cheng, I.-J., J. S. Levinton, M. McCartney, D. Martinez, and M. J. Weissburg. 1993. A bioassay approach to seasonal variation in the nutritional value of sediment. Marine Ecology Progress Series 94:275–285.

    Google Scholar 

  • Cloern, J. E., T. M. Powell, and L. M. Huzzey. 1989. Spatial and temporal variability in south San Francisco Bay (USA). II. Temporal changes in salinity, suspended sediments, and phytoplankton biomass and productivity over tidal time scales. Estuarine Coastal and Shelf Science 28:599–613.

    CAS  Google Scholar 

  • Colijn, F. 1982. Light absorption in the waters of the Ems-Dollard estuary and its consequences for the growth of phytoplankton and microphytobenthos. Netherlands Journal of Sea Research 15:196–216.

    Google Scholar 

  • Colijn, F. and V. N. de Jonge. 1984. Primary production of microphytobenthos in the Ems-Dollard estuary. Marine Ecology Progress Series 14:185–196.

    Google Scholar 

  • Colijn, F. and K. S. Dijkema. 1981. Species composition of benthic diatoms and distribution of chlorophyll a on an intertidal flat in the Dutch Wadden Sea. Marine Ecology Progress Series 4:9–21.

    Google Scholar 

  • Colijn, F. and G. van Buurt. 1975. Influence of light and temperature on the photosynthetic rate of marine benthic diatoms. Marine Biology 31:209–214.

    Google Scholar 

  • Connor, M. S. and R. K. Edgar. 1982. Selective grazing by the mud snail Ilyanassa obsoleta. Oecologia 53:271–275.

    Google Scholar 

  • Côte, B. and T. Platt. 1983. Day-to-day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton. Limnology and Oceanography 28:320–344.

    Google Scholar 

  • Daemen, E. A. M. J. 1986. Comparison of methods for the determination of chlorophyll in estuarine sediments. Netherlands Journal of Sea Research 20:21–28.

    CAS  Google Scholar 

  • Darley, M. W., C. L. Montague, F. G. Plumley, W. W. Sage, and A. T. Psalidas. 1981. Factors limiting edaphic algal biomass and productivity in a Georgia salt marsh. Journal of Phycology 17:122–128.

    Google Scholar 

  • Davis, M. W. and C. D. McIntire. 1983. Effects of physical gradients on the production dynamics of sediment-associated algae. Marine Ecology Progress Series 13:103–114.

    CAS  Google Scholar 

  • de Jonge, V. N. 1985. The occurrence of ‘episamic’ diatom populations: A result of interaction between physical sorting of sediment and certain properties of diatom species. Estuarine Coastal and Shelf Science 21:607–622.

    Google Scholar 

  • de Jonge, V. N. and F. Colijn. 1994. Dynamics of microphytobenthos biomass in the Ems estuary. Marine Ecology Progress Series 104:185–196.

    Google Scholar 

  • de Jonge, V. N. and J. E. E. van Beusekom. 1992. Contribution of resuspended microphytobenthos to total phytoplankton in the Ems Estuary and its possible role for grazers. Netherlands Journal of Sea Research 30:91–105.

    Google Scholar 

  • Delgado, M. 1989. Abundance and distribution of microphytobenthos in the bays of Ebro Delta (Spain). Estuarine Coastal and Shelf Science 29:183–194.

    Google Scholar 

  • Delgado, M., V. de Jonge, and H. Peletier. 1991. Experiments on the resuspension of natural microphytobenthos populations. Marine Biology 108:321–328.

    Google Scholar 

  • Demers, S., J.-C. Therriault, E. Bourget, and A. Bah. 1987. Resuspension in the shallow sublittoral zone of a macrotidal estuarine environment: Wind influence. Limnology and Oceanography 32:327–339.

    Article  CAS  Google Scholar 

  • Estrada, M., I. Valiela, and J. M. Teal. 1974. Concentration and distribution of chlorophyll on fertilized plots in a Massachusetts salt marsh. Journal of Experimental Marine Biology and Ecology 14:47–56.

    Google Scholar 

  • Fenchel, T. and B. J. Straarup. 1971. Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22:172–182.

    CAS  Google Scholar 

  • Fielding, P. J., K. St. J. Damstra, and G. M. Branch. 1988. Benthic diatom biomass, production and sediment chlorophyll in Langebaan Lagoon, South Africa. Estuarine Coastal and Shelf Science 27:413–426.

    CAS  Google Scholar 

  • Garbielson, J. O. and R. J. Lukatelich. 1985. Wind-related resuspension of sediments in the Peel-Harvey estuarine system. Estuarine Coastal and Shelf Science 20:135–145.

    Google Scholar 

  • Gallagher, J. J. 1975. The significance of the surface film in salt marsh plankton metabolism. Limnology and Oceanography 20:120–123.

    Google Scholar 

  • Garcia-Soto, C., I. de Madariaga, F. Villate, and E. Orive. 1990. Day-to-day variability in the plankton community of a coastal shallow embayment in response to changes in river runoff and water turbulence. Estuarine Coastal and Shelf Science 31:217–229.

    Google Scholar 

  • Gargas, E. 1970. Measurements of primary production, dark fixation and vertical distribution of the microbenthic algae in the Øresund. Ophelia 8:231–253.

    Google Scholar 

  • Gargas, E. 1971. Sun-shade adaptation in microbenthic algae from the Øresund. Ophelia 9:107–112.

    Google Scholar 

  • Gargas, E. 1972. Measurement of microalgal primary production (phytoplankton and microbenthos) in the Smålandshavet (Denmark). Ophelia 10:75–89.

    Google Scholar 

  • Garrad, P. N. and R. D. Hey. 1987. Boat traffic, sediment suspension and turbidity in a broadland river. Journal of Hydrobiology 95:289–297.

    Google Scholar 

  • Gomoiu, M.-T. 1967. Some quantitative data on light penetration in sediments. Helgoländer Wissenschaftliche Meeresuntersuchungen 15:120–127.

    Google Scholar 

  • Gould, D. M. and E. D. Gallagher. 1990. Field measurements of specific growth rate, biomass, and primary production of benthic diatoms of Savin Hill Cove, Boston. Limnology and Oceanography 35:1757–1770.

    Google Scholar 

  • Granéli, E. and K. Sundbäck. 1985. The response of planktonic and microbenthic algal assemblages to nutrient enrichment in shallow coastal waters, southwestern Sweden. Journal of Experimental Marine Biology and Ecology 85:253–268.

    Google Scholar 

  • Grant, J. 1986. Sensitivity of benthic community respiration and primary production to changes in temperature and light. Marine Biology 90:299–306.

    Google Scholar 

  • Grøntved, J. 1960. On the productivity of microbenthos and phytoplankton in some Danish fjords. Meddelelser fra Danmarks Fisheri- og Havundersøgelser 3:55–92.

    Google Scholar 

  • Haardt, H. and G. Æ. Nielsen. 1980. Attenuation measurements of monochromatic light in marine sediments. Oceanologica Acta 3:333–338.

    Google Scholar 

  • Hartwig, E. O. 1978. Factors affecting respiration and photosynthesis by the benthic community of a subtidal siliceous sediment. Marine Biology 46:283–293.

    CAS  Google Scholar 

  • Heckman, C. W. 1985. The development of vertical migration patterns in the sediments of estuaries as a strategy for algae to resist drift with tidal currents. Internationale Revue der Gesamten Hydrobiologie 70:151–164.

    Google Scholar 

  • Herndl, G. J., P. Peduzzi, and N. Fanuko. 1989. Benthic community metabolism and microbial dynamics in the Gulf of Trieste (Northern Adriatic Sea). Marine Ecology Progress Series 53:169–178.

    Google Scholar 

  • Hickman, M. and F. E. Round. 1970. Primary production and standing crops of epipelic and epipsammic algae. British Phycology Journal 5:247–255.

    Google Scholar 

  • Holland, A., R. Zingmark, and J. Dean. 1974. Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms. Marine Biology 27:191–196.

    Google Scholar 

  • Holm-Hansen, O. 1978. Chlorophyll a determination: Improvements in methodology. Oikos 30:438–447.

    CAS  Google Scholar 

  • Hopkins, J. T. 1963. A study of the diatoms of the Ouse estuary, Sussex. I. The movement of the mud-flat diatoms in response to some chemical and physical changes. Journal of the Marine Biology Association of the United Kingdom 43:653–663.

    Article  Google Scholar 

  • Howarth, R. W. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1:5–27.

    CAS  Google Scholar 

  • Hunding, C. 1971. Production of benthic microalgae in the littoral zone of a eutrophic lake. Oikos 22:389–397.

    Google Scholar 

  • Jassby, A. D., J. E. Cloern, and T. M. Powell. 1993. Organic carbon sources and sinks in San Francisco Bay: Variability induced by river flow. Marine Ecology Progress Series 95:39–54.

    CAS  Google Scholar 

  • Jassby, A. D. and T. Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography 21:540–547.

    CAS  Google Scholar 

  • Jeffrey, S. W. and G. F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochemie and Physiologie der Pflantzen 167:191–194.

    CAS  Google Scholar 

  • Jenness, M. I. and G. C. A. Duineveld. 1985. Effects of tidal currents on chlorophyll a content of sandy sediments in the southern North Sea. Marine Ecology Progress Series 21:283–287.

    CAS  Google Scholar 

  • Joint, I. R. 1978. Microbial production of an estuarine mudflat. Estuarine and Coastal Marine Science 7:185–195.

    Google Scholar 

  • Joint, I. R., J. M. Gee, and R. M. Warwick. 1982. Determination of fine-scale vertical distribution of microbes and meiofauna in an intertidal sediment. Marine Biology 72:157–164.

    Google Scholar 

  • Jönsson, B. 1991. A 14C-incubation technique for measuring microphytobenthic primary production in intact sediment cores. Limnology and Oceanography 36:1485–1492.

    Google Scholar 

  • Jørgensen, B. B. and D. J. Des Marais. 1986. A simple fiberoptic microprobe for high resolution light measurements: Application in marine sediment. Limnology and Oceanography 31:1376–1383.

    Google Scholar 

  • Jørgensen, B. B. and D. J. Des Marais. 1988. Optical properties of benthic photosynthetic communities: Fiber-optic studies of cyanobacterial mats. Limnology and Oceanography 33:99–113.

    Google Scholar 

  • Jørgensen, B. B. and N. P. Revsbech. 1983. Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities. Limnology and Oceanography 28:1075–1093.

    Google Scholar 

  • Jørgensen, B. B., N. P. Revsbech, T. H. Blackburn, and Y. Cohen. 1979. Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Applied and Environmental Microbiology 37:46–58.

    Google Scholar 

  • Jumars, P. A. and A. R. M. Nowell. 1984. Fluid and sediment dynamic effects on marine benthic community structure. American Zoology 24:45–55.

    Google Scholar 

  • Kromm, M. 1991. Importance of benthic productivity in controlling the flux of dissolved inorganic nitrogen through the sediment-water interface in a hypertrophic marine ecosystem. Marine Ecology Progress Series 78:163–172.

    Google Scholar 

  • Kühl, M. and B. B. Jørgensen. 1994. The light field of microbenthic communities: Radiance distribution and microscale optics of sandy coastal sediments. Limnology and Oceanography 39:1368–1398.

    Google Scholar 

  • Kühl, M., C. Lassen, and B. B. Jørgensen. 1994. Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobes. Marine Ecology Progress Series 105:139–148.

    Google Scholar 

  • Leach, J. H. 1970. Epibenthic algal production in an intertidal mudflat. Limnology Oceanography 15:514–521.

    Google Scholar 

  • Litaker, W., C. S. Duke, B. E. Kenney, and J. Ramus. 1987. Short-term environmental variability and phytoplankton abundance in a shallow tidal estuary. I. Winter and summer. Marine Biology 96:115–121.

    CAS  Google Scholar 

  • Litaker, W., C. S. Duke, B. E. Kenney, and J. Ramus. 1993. Short-term environmental variability and phytoplankton abundance in a shallow tidal estuary. II. Spring and fall. Marine Ecology Progress Series 94:141–154.

    Google Scholar 

  • Lorenzen, C. J. and S. W. Jeffrey. 1980. Determination of chlorophyll in sea water. UNESCO Technical Papers in Marine Science 35:1–20.

    Google Scholar 

  • Lukatelich, R. J. and A. J. McComb. 1986. Distribution and abundance of benthic microalgae in a shallow southwestern Australian estuarine system. Marine Ecology Progress Series 27:287–297.

    Google Scholar 

  • MacIntyre, H. L. and J. J. Cullen. 1995. Fine-scale vertical resolution of chlorophyll and photosynthetic parameters in shallow-water benthos. Marine Ecology Progress Series 122:227–237.

    CAS  Google Scholar 

  • MacIntyre, H. L. and J. J. Cullen. 1996. Primary production by suspended and benthic microalgae in a turbid estuary: Time-scales of variability in San Antonio Bay, Texas. Marine Ecology Progress Series In Press.

  • Marshall, N., C. A. Oviatt, and D. M. Skauen. 1971. Productivity of the benthic microflora of shoal estuarine environments in southern New England. Internationale Revue der gesamten Hydrobiologie 56:947–956.

    Google Scholar 

  • Marshall, N., D. M. Skauen, H. C. Lampe, and C. A. Oviatt. 1972. A guide to the measurement of marine production under some special conditions, p. 37–44. Monographs on Oceanographic Methodology, 3, UNESCO, Paris.

    Google Scholar 

  • Matheke, G. E. M. and R. Horner. 1974. Primary productivity of the benthic microalgae in the Chukchi Sea near Barow, Alaska. Journal of the Fisheries Research Board of Canada 31:1779–1786.

    Google Scholar 

  • McClatchie, S., S. K. Juniper, and G. A. Knox. 1982. Structure of a mudflat diatom community in the Avon-Heathcote Estuary, New Zealand. New Zealand Journal of Marine and Fresh-water Research 16:299–309.

    Google Scholar 

  • Meadows, P. S. and J. G. Anderson. 1968. Micro-organisms attached to marine sand grains. Journal of the Marine Biology Association of the United Kingdom 48:161–175.

    Google Scholar 

  • Miller, D. C., R. J. Geider, H. L. MacIntyre. 1996. Microphytobenthos: The ecological role of the “Secret Garden” of unvegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19:202–212.

    Google Scholar 

  • Nienhuis, P. H. and B. H. H. de Bree. 1984. Carbon fixation and chlorophyll in bottom sediments of brackish Lake Grevelingen, the Netherlands. Netherlands Journal of Sea Research 18:337–359.

    CAS  Google Scholar 

  • Nowicki, B. L. and S. W. Nixon. 1985. Benthic community metabolism in a coastal lagoon ecosystem. Marine Ecology Progress Series 22:21–30.

    Google Scholar 

  • Palmer, J. D. and F. E. Round. 1965. Persistent, vertical-migration rhythms in benthic microflora. I. The effect of light and temperature on the rhythmic behaviour of Euglena obtusa. Journal of the Marine Biology Association of the United Kingdom 45:567–582.

    Google Scholar 

  • Pamatmat, M. M. 1968. Ecology and metabolism of a benthic community on an intertidal sand flat. Internationale Revue der Gesamten Hydrobiologie 53:211–298.

    Google Scholar 

  • Paterson, D., R. Crawford, and C. Little. 1990. Subaerial exposure and changes in sediment stability of intertidal estuarine sediments. Estuarine Coastal and Shelf Science 30:541–556.

    Google Scholar 

  • Pejrup, M. 1986. Parameters affecting fine-grained suspended sediment concentrations in a shallow micro-tidal estuary, Ho Bugt, Denmark. Estuarine Coastal and Shelf Science 22:241–254.

    Google Scholar 

  • Pinckney, J. and R. G. Zingmark. 1993a. Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16:887–897.

    CAS  Google Scholar 

  • Pinckney, J. and R. G. Zingmark. 1993b. Modelling intertidal benthic microalgal production in estuaries. Journal of Phycology 29:396–407.

    Google Scholar 

  • Pinckney, J. and R. G. Zingmark. 1993c. Photophysiological responses of intertidal benthic microalgal communities to in situ light environments: Methodological considerations. Limnology and Oceanography 38:1373–1383.

    Article  Google Scholar 

  • Plante-Cuny, M. R., C. Barranguet, D. Bonn, and C. Grenz. 1993. Does chlorophyllide a reduce reliability of chlorophyll a measurements in marine coastal sediments? Aquatic Science 55:19–30.

    Google Scholar 

  • Plante-Cuny, M. R. and A. Bodoy. 1987. Biomasse et production primaire du phytoplancton et du microphytobenthos de deux biotopes sableux (Golfe de Fos, France). Oceanology Acta 10:223–237.

    CAS  Google Scholar 

  • Pomeroy, L. R. 1959. Algal productivity in salt marshes of Georgia. Limnology and Oceanography 4:386–397.

    Google Scholar 

  • Propp, M. V., V. G. Tarasoff, I. I. Cherbadgi, and N. V. Lootzik. 1980. Benthic-pelagic oxygen and nutrient exchange in a coastal region of the Sea of Japan, p. 265–284. In K. R. Tenore and B. C. Coull (eds.), Marine Benthic Dynamics. University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Rasmussen, M. B., K. Henricksen, and A. Jensen. 1983. Possible causes of temporal fluctuations in primary production of the microphytobenthos in the Danish Wadden Sea. Marine Biology 73:109–114.

    Google Scholar 

  • Revsbech, N. P., B. B. Jørgensen, T. H. Blackburn, and Y. Cohen. 1983. Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnology and Oceanography 28:1062–1074.

    Google Scholar 

  • Revsbech, N. P., B. B. Jørgensen, and B. B. Brix. 1981. Primary production of microalgae in sediments measured by oxygen microprofile, H14CO3 fixation, and oxygen exchange methods. Limnology and Oceanography 26:717–730.

    CAS  Google Scholar 

  • Riaux, C. 1983. Structure d'un peuplement estuarien de diatomées épipéliques du Nord-Finistére. Oceanologica Acta 6: 173–183.

    Google Scholar 

  • Riaux-Gobin, C., C. A. Llewellyn, and B. Klein. 1987. Microphytobenthos from two subtidal sediments from North Brittany. II. Variations of pigment compositions and concentrations determined by HPLC and conventional techniques. Marine Ecology Progress Series 40:275–283.

    CAS  Google Scholar 

  • Riaux-Gobin, C., M. V. M. Wafar, and B. Klein. 1993. Production primaire potentielle microphytobenthique d'une slikke de nord Bretagne: Stratifaction verticale. Journal of Experimental Marine Biology and Ecology 169:215–231.

    Google Scholar 

  • Riznyk, R. Z., J. I. Edens, and R. C. Libby. 1978. Production of epibenthic diatoms in a southern California impounded estuary. Journal of Phycology 14:273–279.

    Google Scholar 

  • Riznyk, R. Z. and H. K. Phinney. 1972. The distribution of intertidal phytopsammon in an Oregon estuary. Marine Biology 13:318–324.

    Google Scholar 

  • Rizzo, W. M., G. L. Lackey, and R. R. Christian. 1992. Significance of euphotic, subtidal sediments to oxygen and nutrient cycling in a temperate estuary. Marine Ecology Progress Series 86: 51–61.

    Google Scholar 

  • Rizzo, W. M. and R. L. Wetzel. 1985. Intertidal and shoal benthic community metabolism in a temperate estuary: Studies of spatial and temporal scales of variability. Estuaries 8:342–351.

    Google Scholar 

  • Rodhe, W. 1966. Standard correlations between pelagic photosynthesis and light, p. 365–381. In C. R. Goldman (ed.), Primary Productivity in Aquatic Environments. University of California Press, Berkeley, California.

    Google Scholar 

  • Roman, M. R. and K. R. Tenore. 1978. Tidal resuspension in Buzzards Bay, Massachusetts. I. Seasonal changes in the resuspension of organic carbon and chlorophyll a. Estuarine and Coastal Marine Science 6:37–46.

    CAS  Google Scholar 

  • Round, F. E. 1979a. A diatom assemblage living below the surface of intertidal sand flats. Marine Biology 54:219–223.

    Google Scholar 

  • Round, F. E. 1979b. Occurrence and rhythmic behaviour of Tropidoneis lepidoptera in the epipelon of Barnstable Harbor, Massachusetts, USA. Marine Biology 54:215–217.

    Google Scholar 

  • Sanford, L. P., W. Panageotou, and J. P. Halka. 1991. Tidal resuspension of sediments in northern Chesapeake Bay. Marine Geology 97:87–103.

    Google Scholar 

  • Shaffer, G. P. 1984. The effect of sedimentation on the primary production of benthic microflora. Estuaries 7:497–500.

    Google Scholar 

  • Shaffer, G. P. 1988a. A comparison of benthic microfloral production on the West and Gulf coasts of the United States: An introduction to the dynamic K-systems model. Marine Ecology Progress Series 43:55–62.

    Google Scholar 

  • Shaffer, G. P. 1988b. K-systems analysis for determining the factors influencing benthic microalgal productivity in a Louisiana estuary, USA. Marine Ecology Progress Series 43:43–54.

    Google Scholar 

  • Shaffer, G. P. and C. P. Onuf. 1983. An analysis of factors influencing the primary production of the benthic microflora in a southern California lagoon. Netherlands Journal of Sea Research 17:126–144.

    CAS  Google Scholar 

  • Shaffer, G. P. and C. P. Onuf. 1985. Reducing the error in estimating annual production of benthic microflora: Hourly to monthly rates, patchiness in space and time. Marine Ecology Progress Series. 26:221–231.

    Google Scholar 

  • Shaffer, G. P. and M. J. Sullivan. 1988. Water column productivity attributable to displaced benthic diatoms in well-mixed shallow estuaries. Journal of Phycology 24:132–140.

    Google Scholar 

  • Steele, J. H. and I. E. Baird. 1968. Production ecology of a sandy beach. Limnology and Oceanography 13:14–25.

    Google Scholar 

  • Sullivan, M. J. 1975. Diatom communities from a Delaware salt marsh. Journal of Phycology 11:384–390.

    Google Scholar 

  • Sullivan, M. J. and F. C. Daiber. 1975. Light, nitrogen, and phosphorus limitation of edaphic algae in a Delaware salt marsh. Journal of Experimental Marine Biology and Ecology 18:79–88.

    Google Scholar 

  • Sullivan, M. and C. Moncreiff 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24:49–58.

    Article  Google Scholar 

  • Sun, M. Y., R. C. Aller, and C. Lee. 1994. Spatial and temporal distributions of sedimentary chloropigments as indicators of benthic processes in Long Island Sound. Journal of Marine Research 52:149–176.

    Google Scholar 

  • Sundbäck, K., V. Enoksson, W. Granéli, and K. Pettersson. 1991. Influence of sublittoral microphytobenthos on the oxygen and nutrient flux between sediment and water: A laboratory continuous-flow study. Marine Ecology Progress Series 74: 263–279.

    Google Scholar 

  • Sundbäck, K. and W. Granéli.. 1988. Influence of microphytobenthos on the nutrient flux between sediment and water: A laboratory study. Marine Ecology Progress Series 43:63–69.

    Google Scholar 

  • Sundbäck, K. and B. Jönsson. 1988. Microphytobenthic productivity and biomass in sublittoral sediments of a stratified bay, southeastern Kattegat. Journal of Experimental Marine Biology and Ecology 122:63–81.

    Google Scholar 

  • Sweerts, J. P., J. W. M. Rudd, and C. A. Kelly. 1986. Metabolic activities in flocculent surface sediments and underlying sandy littoral sediments. Limnology and Oceanography 31:330–338.

    CAS  Google Scholar 

  • Taasen, J. P. and T. Høisæter. 1981. The shallow-water soft-bottom benthos in Lindåspollene, western Norway. 4. Benthic marine diatoms, seasonal density fluctuations. Sarsia 66:293–316.

    Google Scholar 

  • Taylor, W. R. 1964. Light and photosynthesis in intertidal benthic diatoms. Helgoländer Wissenschaftliche Meeresuntersuchungen 10:24–37.

    Google Scholar 

  • Taylor, W. R. and C. D. Gebelein. 1966. Plant pigments and light penetration in intertidal sediments. Helgoländer Wissenschaftliche Meeresuntersuchungen. 13:229–237.

    CAS  Google Scholar 

  • Tett, P. 1982. The Loch Eil project: Planktonic pigmets in sediments from Loch Eil and the Firth of Lorne. Journal of Experimental Marine Biology and Ecology 56:101–114.

    Google Scholar 

  • van Es, F. B. 1982. Community metabolism of intertidal flats in the Ems-Dollard estuary. Marine Biology 66:95–108.

    Google Scholar 

  • van Raalte, C. D., I. Valiela, and J. M. Teal. 1976. Production of benthic salt marsh algae: Light and nutrient limitation. Limnology and Oceanography 21:862–872.

    Google Scholar 

  • Varela, M. and E. Penas. 1985. Primary production of benthic microalgae in an intertidal sand flat of the Ria de Arosa, NW Spain. Marine Ecology Progress Series 25:111–119.

    Google Scholar 

  • Von Heukelem, L., A. J. Lewittus, T. M. Kana, and N. E. Craft. 1992. High performance liquid chromatography of phytoplankton pigments using a polymeric reversed phase C18 column. Journal of Phycology 28:867–872.

    Google Scholar 

  • Walker, T. A. 1981. Dependence of phytoplankton chlorophyll on bottom resuspension in Cleveland Bay, Northern Queensland. Australian Journal of Marine and Freshwater Research 32: 981–986.

    CAS  Google Scholar 

  • Ward, L. G. 1985. The influence of wind waves and tidal currents on sediment resuspension in middle Chesapeake Bay (and sediment stability relationships to benthos and anoxia). Geo-Marine Letters 5:71–75.

    Google Scholar 

  • Whitney, D. E. and W. M. Darley. 1979. A method for the determination of chlorophyll a in samples containing degradation products. Limnology and Oceanography 2:183–186.

    Google Scholar 

  • Whitney, D. E. and W. M. Darley. 1983. Effect of light intensity upon salt marsh benthic microalgal photosynthesis. Marine Biology (Berlin) 75:249–251.

    CAS  Google Scholar 

  • Yager, P. L., A. R. M. Nowell, and P. A. Jumars. 1993. Enhanced deposition to pits: A local food source for benthos. Journal of Marine Research 51:209–236.

    Google Scholar 

  • Yallop, M. L., B. De Winder, D. M. Paterson, and L. J. Stal. 1994. Comparative structure, primary production, and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuarine Coastal and Shelf Science 39:565–582.

    Google Scholar 

  • Zedler, J. B. 1980. Algal mat productivity: Comparisons in a salt marsh. Estuaries 3:122–131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh L. MacIntyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacIntyre, H.L., Geider, R.J. & Miller, D.C. Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19, 186–201 (1996). https://doi.org/10.2307/1352224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352224

Keywords

Navigation