Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T16:47:10.931Z Has data issue: false hasContentIssue false

Asymptotic properties of supercritical branching processes I: The Galton-Watson process

Published online by Cambridge University Press:  01 July 2016

N. H. Bingham
Affiliation:
Westfield College, University of London
R. A. Doney
Affiliation:
University of Manchester

Abstract

We obtain results connecting the distributions of the random variables Z1 and W in the supercritical Galton-Watson process. For example, if a > 1, and converge or diverge together, and regular variation of the tail of one of Z1, W with non-integer exponent α > 1 is equivalent to regular variation of the tail of the other.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1974 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Athreya, K. B. (1971) A note on a functional equation arising in Galton-Watson branching processes. J. Appl. Prob. 8, 589598.CrossRefGoogle Scholar
[2] Athreya, K. B. and Ney, P. E. (1973) Branching Processes. Springer, Berlin.Google Scholar
[3] Bingham, N. H. and Doney, R. A. (1975) Asymptotic properties of supercritical branching processes. II: Crump-Mode processes. Adv. Appl. Prob. 7. To appear.CrossRefGoogle Scholar
[4] Crump, K. and Mode, C. J. (1968) A general age-dependent branching process I. J. Math. Anal. Appl. 24, 494508.CrossRefGoogle Scholar
[5] Crump, K. and Mode, C. J. (1969) A general age-dependent branching process II. J. Math. Anal. Appl. 25, 817.CrossRefGoogle Scholar
[6] Doney, R. A. (1972) A limit theorem for a class of supercritical branching processes. J. Appl. Prob. 9, 707724.CrossRefGoogle Scholar
[7] Doney, R. A. (1973) On a functional equation for general branching processes. J. Appl. Prob. 10, 198205.CrossRefGoogle Scholar
[8] Dubuc, S. (1971) Problèmes relatifs a l'itération de fonctions suggérés par les processus en cascade. Ann. Inst. Fourier (Grenoble) 21, 171251.CrossRefGoogle Scholar
[9] Feller, W. (1971) An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed. Wiley, New York.Google Scholar
[10] Grey, D. R. (1974) Asymptotic properties of continuous-time, continuous state-space branching processes. J. Appl. Prob. 11, 000000.CrossRefGoogle Scholar
[11] Harris, T. E. (1948) Branching processes. Ann. Math. Statist. 19, 474494.CrossRefGoogle Scholar
[12] Harris, T. E. (1963) The Theory of Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
[13] Heyde, C. C. (1970) A rate-of-convergence result for the supercritical Galton-Watson process. J. Appl. Prob. 7, 451454.CrossRefGoogle Scholar
[14] Heyde, C. C. (1970) Extension of a result of Seneta for the supercritical Galton-Watson process. Ann. Math. Statist. 41, 739742.CrossRefGoogle Scholar
[15] Heyde, C. C. (1971) Some central limit analogues for supercritical Galton-Watson processes. J. Appl. Prob. 8, 5259.CrossRefGoogle Scholar
[16] Holmes, R. A. (1973) A local asymptotic law and the exact Hausdorff measure for a simple branching process. Proc. Lond. Math. Soc. (3) 26, 577604.CrossRefGoogle Scholar
[17] Karamata, J. (1930) Sur un mode de croissance régulière des fonctions. Mathematica (Cluj) 4, 3853.Google Scholar
[18] Kesten, H. and Stigum, B. P. (1966) A limit theorem for the multi-dimensional Galton-Watson processes. Ann. Math. Statist. 37, 12111223.CrossRefGoogle Scholar
[19] Kesten, H. and Stigum, B. P. (1966) Additional limit theorems for indecomposable multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 14631481.CrossRefGoogle Scholar
[20] Lamperti, J. (1967) Limit distributions for branching processes. Proc. Fifth Berkeley Symposium 2, Part 2, 225241.Google Scholar
[21] Mode, C. J. (1971) Multitype Branching Processes. Elsevier, New York.Google Scholar
[22] Pitman, E. J. G. (1968) On the behaviour of the characteristic function of a probability distribution in the neighbourhood of the origin. J. Austral. Math. Soc. 8, 422443.CrossRefGoogle Scholar
[23] Potter, H. S. A. (1942) The mean value of a Dirichlet series II. Proc. Lond. Math. Soc. 47, 119.CrossRefGoogle Scholar
[24] Seneta, E. (1968) On recent theorems concerning the supercritical Galton-Watson process. Ann. Math. Statist. 39, 20982102.CrossRefGoogle Scholar
[25] Seneta, E. (1969) Functional equations and the Galton-Watson process. Adv. Appl. Prob. 1, 142.CrossRefGoogle Scholar
[26] Seneta, E. (1973) The simple branching process with infinite mean. I. J. Appl. Prob. 10, 206212.CrossRefGoogle Scholar
[27] Seneta, E. (1974) A Tauberian theorem of E. Landau and W. Feller. Ann. Probab. To appear.CrossRefGoogle Scholar
[28] Stigum, B. P. (1966) A theorem on the Galton-Watson process. Ann. Math. Statist. 37, 695698.CrossRefGoogle Scholar
[29] Teugels, J. L. (1970) Regular variation of Markov renewal functions. J. Lond. Math. Soc. (2) 2, 179190.CrossRefGoogle Scholar