鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
固体金属円柱から溶融金属中への物質移動
小坂 岑雄蓑輪 晋
著者情報
ジャーナル フリー

1966 年 52 巻 12 号 p. 1748-1762

詳細
抄録

1) Mass-transfer coefficient, k, from rotated or static solid metal cylinder surface into liquid metal, was measured chemically or gravimetrically.
In this report, steel-Al, steel-Zn, Cu-Pb, Zn-Hg and Sn-Hg were employed as the combination of solid metal cylinder-liquid metal bath.
Correlation of mass-transfer coeff. to the physical properties of liquid metal, diffusion coeff., characteristic length of the cylinder and experimental conditions (temperature, speed of rotation, etc.) was analysed non-dimensionally.
Results obtained are as follows:
Jd=(k/U)(Sc)2/3=0.065(Re)-0.25: rotated cylinder
(Sh)=0.124 (Gr·m×Sc)1/3: static cylinder
2) These equations were rearranged to estimate the mass-transfer coeff. in the dissolution process of steel cylinder into liquid Fe-C alloy at about 1400°C.
k=9.14×10-4 (L)-0.25(U)0.75: rotated cylinder
k=1.17×10-2 (Δρ) 0.333: static cylinder
Experimental results fairly agreed with the estimated values in the case of rotated cylinder but were about 30% lower than estimated values in the case of static cylinder, as averaged k.
3) It would be concluded that the non-dimensional correlation of mass-transfer, predicted in common fluid at lower temperature, holds fairly well even with high temperature liquid metal such as Fe-C alloy at 1400°C in spite of technical difficulties of experiment at high temperature (especially in free convection) and the lack of the fundamental data on physical properties, diffusion coeff. of liquid metals.

著者関連情報
© 一般社団法人 日本鉄鋼協会
前の記事 次の記事
feedback
Top