鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
粒子配置を考慮した充填層の熱物質移動解析
夏井 俊悟昆 竜矢植田 滋加納 純也井上 亮有山 達郎埜上 洋
著者情報
ジャーナル オープンアクセス

2012 年 98 巻 7 号 p. 341-350

詳細
抄録

Low reducing agent operation of large blast furnace has attracted a special attention from the background of the global warming. Because the coke ratio is reduced in this operation, causing a huge local ventilation resistance that causes operational problems, it has become increasingly necessary to understand the operation of blast furnace based on non-empirical phenomena. Among the most promising numerical approaches is a combination of the discrete element method (DEM) and computational fluid dynamics (CFD). In this study, particle-based model was newly developed, which considers heat transfer, mass transfer and chemical reactions in the shaft part of blast furnace. It became possible to analyze the three-dimensional discontinuous phenomena among particle with gas flow.
Because this model was developed to expand the spatial scale more than conventional analysis, the discontinuous factors made it possible to simulate by the behavior of discrete particles. The particle arrangement and the packed bed structure were evaluated for studying the flow structure, temperature and composition distribution. Remarkable change in the heat and mass transfer characteristic appeared in the interface between coke and ore layer, and near the wall. The ore and coke particle mixture system, which was expected to improve reducing rate due to the dense packing, is relatively-ineffective. Rather, a low permeability resistance improved reducing rate, it means convection effect was larger. Degree of freedom of particle arrangement is high, and its large influence on temperature and reaction distribution, it was able to show the usefulness of this model.

著者関連情報
© 2012 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top