

International Journal of Engineering and Applied Computer Science (IJEACS)

Volume: 01, Issue: 01, November 2016
ISBN: 978-0-9957075-0-4

www.ijeacs.com 17

Program Comprehension and Analysis

Asfa Praveen

Dept. of Computer Science

Shri Venkateshwara University, Gajraula

Amroha, U.P., India.

Abstract - Due to continuous change in business requirements and

to implement proactive, adaptive maintenance procedures in

application program; it is required to evolve application program

time to time. Program comprehension is a process of program

understanding and reverse engineering, which supports the

analyst to easily undertake the program for further

reengineering. This paper highlights the program elements,

components, its analytical solutions for understanding,

comprehensions and extension.

Keywords- component; wrapper; comprehesion; application; code.

I. INTRODUCTION

Program comprehension process uses the term component
to denote the various elements needed to develop a program.
Comprehension is a process of analyzing program components
and reverse engineering. Analyze data are recorded in
knowledge base. To better comprehend the program, it is core
issue to find the elements of program which mostly depends on
perspective of understanding and investigation. Subject of
concern is to investigate the candidate program, identify
program elements, slice it and fed them in to a knowledge base.
This knowledge base can be further managed to find the
information of program for comprehension purpose. The
effectiveness of method depends on program under study, its
logic, structure, programming language used, problem solution
implementation mechanism, what program does and how the
program does. Program comprehension process is a highly
cognitive task; conceptual knowledge based on human
cognitive efficiency can’t be overlooked. Analyst must
understand the program structure, flow and environment.

Comprehension process [1] also based on objects
identification, class investigation, study of components
formation process, elements interactions and flow control.
Program elements also include database descriptors, program
specification blocks, screens, file definitions and message
formatting services. These also represent the components
associated with system-level understanding.

II. PROGRAM AND ITS RELATIONSHIP LAYER

Program comprehension layers can be categorized as:

1) Program elements and their relationships

2) Program control, data flow and business modules

3) Program process flows and business rules

In the process of program comprehension, analyst identifies

a) Unknown elements

b) Unknown relationships
The various levels of comprehension identify all level of

relationships with application interfaces, this is significant
when existing software is needed to be reengineered or
subjected to migration towards wrapping technologies. It also
establishes the migration opportunities to updating software.
This stage of comprehension needs identifying the relationship
among program elements. In homogeneous system
architecture, identifying and analyzing this type of relationship
is easy to obtain and record, while in heterogeneous program, it
is very tedious task.

Next step for the comprehension process is to study about
control flow, data description, data flow, business logics and
modular structure; integration of components and program
code. With the analysis of program code and connection of
relationships the understanding of control and data elements
will take place. This maturity of comprehension is important to
develop a big understanding level of program elements
integration and deployment. This is also useful when existing
systems incorporate new components through wrapping.

Process flows investigation propagates to write line by line
description of code components, inner process flow and
business rules integration. Modifications in the program code
which have occurred time to time generally increases the level
of complexity of comprehension and reduce understandability
level [2]. Syntax, semantics and statement logic organization
are necessary to analyze and document to find a relationship
with domain of program classification.

III. PROGRAM COMPLEXITY

75-80% of total software cost dedicated to maintenance and
reengineering in a software life time. 40-60% of total
reengineering and maintenance effort spent for program
comprehension process. Program complexity plays a major role
in comprehension of candidate program. The discipline of
software measurements has analyzed the levels of complexity
with many specified software and conceptual tools such as
cyclomatic complexity.

Asfa Praveen (IJEACS) International Journal of Engineering and Applied Computer Science

Volume: 01, Issue: 01, November 2016
ISBN: 978-0-9957075-0-4

www.ijeacs.com 18

Cyclomatic complexity represents the number of
independent paths through a program. The Software
Engineering Institute (SEI) provides the following range for
identifying complex programs and associated risks.

TABLE I. COMPLEXITY EVALUATION

(Source: SEI CMU)

This Program comprehension has become more complex

process when it is needed to analyze business rules and

migration to new technologies. Study of program, its level of

effort, which is needed for comprehension study, is facilitated

by cyclomatic complexity analysis. Cyclomatic complexity

results play crucial role in program study and understanding

process.

IV. MAJOR PROGRAM ELEMENTS

In the abstract level program analysis procedure focuses on
the following three major elements of application structure.

a) Program presentation

b) Program logic

c) Program data and flow
Above mentioned elements are very helpful in identifying

business process and analysis of rules in candidate application
program. Program logic is a cognitive entity which has high
level of abstraction of data, control flow and application
integration [3]. Other graphical user interface extension
capabilities allow more pleasant and accessible performance
for many initiatives. Separating the performance logic allows
the various initiatives to increase the complexity of their
integration capabilities with other program elements. Further
separation of business logic compromises the probability for
assessment of integrated elements [4] which can be reused
during program integration initiatives. It is assumed that
understanding the data is not considered as a part of
comprehension study but it is required because of data flow and
file management [5]. Because of many strict causes data needs
profiling, which is a task of filtering and summarizing.
Renovation phases need many stages to cover to comprehend
code elements. The following headings explain the level of
comprehension required for each stage [6].

A. Extensions

Program comprehension process improves with help of
component extension approach. Extension if properly
documented and implemented with existing program can give a
better realization of program defects. Front and back end of
database applications need extensions time to time when
evolution is required for business rule applications.

B. Integration

Current application and program comprehension
knowledge at most level of initiatives are not adequate to apply
the increased levels of system evolution. Whether determined
by application integration requirements, analysis for program
elements replacement activities for identifying wrappers and
integration to migrate system program. There is a strong
comprehension of application data flow and control analysis is
needed for proper logical understanding of element integration.

C. Vendors Trends

Many vendors take application integration initiative to
compete the demands of new business objectives. Vendors
adopt the generic technologies and multidisciplinary initiatives
as some distributed application program integration process
need some Java involvements. Comprehension of flows,
interface and logics and relationships in old technologies and
databases need advanced tools. Vendors trends changes
according to development process and practices affects the
comprehension and differs the practices.

D. Restructuring

Restructuring of programs is studied to assess interfaces,
program insulation from its surroundings, isolation of
individual functions from each other, and what are prevented
undesired side-effects. Extracting knowledge from program
requires practically structured code [7]. Program rationality is
hard to measure without objective software metrics. Extraction
process uses these metrics to control the extremes and
implementation of complex system application. It reduces the
cost of reengineering by dropping the program complexity.

For programs with high-complexity metrics, analysis
proposes to wrap them in the same condition in spite of
extracting them for reusability. Much research effort has been
applied into considering the basis of extracting elements or
developing wrappers. Covering the presentation layer with
business logic and data steering logic originates most analysts
to keep away from restructuring the consequences of scenarios.
The previous research returns the results with programs or
well-structured code understanding. Start with user interface
and go to the code base. Analyze sequence and state diagram of
application. Need to comprehend the following elements of
restructuring for reengineering.

a) Class inheritance

b) Control Flow tree

c) Form show tree

d) External class metric

Cylcomatic

Complexity

Risk Evaluation

1 – 10

Simple program which don’t have so much risk

11 – 20

This is more complex program which has moderate

risk level

21 – 50

This is a complex program with high risk

> 50

This is an un-testable program with very high level of

risk

Asfa Praveen (IJEACS) International Journal of Engineering and Applied Computer Science

Volume: 01, Issue: 01, November 2016
ISBN: 978-0-9957075-0-4

www.ijeacs.com 19

V. ANALYTICAL SOLUTIONS

A. System Extensions

System needs to be extended for users those who are
external to the organization want to access the system and
associated program application; these are categorized as
untraditional users. It has been become very difficult to study
the character-based data and covert them to more meaningful
form. There are some needs to convert a character based
interface to visual interface, which has changed variety of
sources of business information which need to being made
available outside traditional channels. These business process
changes possibilities have changed the flow of work and data
control; this has become to a source to study further future
changes in program [8]. Hyper Text Markup Language based
documents based presentation has not limitations which can be
presented using data streams application programming
interface. If it is required to update existing system in a new
ways program and surrounding analysis is needed for systems
modifications. Software wrappers can support up to some
extents but do not fulfill all demands in all perspectives.

B. Wrappers

Several types of software wrappers are available which can
be integrated to application and program, which is a depiction
of the process but not the data. Object oriented methods are
extended with wrappers to use the existing procedural. These
wrappers generate a fulfillment of gap between traditional
procedural programs and Object Oriented methods. Procedural
programs are purposed to perform some action to solve some
particular problem such as processing of database queries. The
actions on data are in procedural order. The wrapper exists to
hide one method from other code in action. This is done in n-
tier architecture to apply separation of concerns. It is accepted
widely, program logic represent data to the traditional user,
who should not have to check that from where the data is
coming and similarly program code who retrieving the data
should not care what is the display of this. Wrappers support
for some specific features as some tile language does not
provide the multiple inheritance but it can be simulated with
the help of wrappers.

C. Black-Box Method

Extending the business logic needs the use of analysis or
code comprehension tools and summary of reports [9]. The
efficacy of a comprehension capability depends on the ease
with which the analysis has been performed. Batch and
concurrent processes, database transactions, application
programs or even methods subroutines can be analyzed for
reengineering towards new applications. These approaches
minimize the efforts of understanding needed. This reduces
internal complexity of comprehension which is time consuming
process.

D. White Box Method

Analyst can understand the leveraging of business rules of
existing program, but needs to remove from the limitations of

the program surrounding. Migration existing business rules and
functionalities to new platform requires the understanding with
wrapping and comprehension to program translation. Further
translation requires the program concepts identification,
understanding business functions, rules with identifying the
data items. This identification is critical to program
redefinition. This method of white box approach is performed
for detailed level of understanding, reusable components.

E. Performance and Scalability

The transaction analysis solutions must communicate a
session to program interaction. Many results may limit
scalability to manage a dynamic session’s management for
always changing source information and interactions. Other
than this the solutions must provide clustering and load
balancing capabilities for new application to adapt the new
demands and growing new extensions in services.

F. Solution for Data ExtensionUnderstanding and Recovery

Data integration analysis is a problem of assortment such as
variety of data sources and uses types. Data analysis tools can
be applied to separate the data source from interface, backend
and application layers and the client interface layer from the
integration of transaction server. This enables enhanced growth
in analysis of data sources and clients implementations. The
main data sources are virtual machine, recovery files,
transactional servers, extension applications, component
objects, query processers source optimizers. Various analysis
technologies allow the understanding of used data models in
the all layers of file management systems. These models can be
converted into logical models for further analysis and
extension, solution of end term extension of application and
program slicing. Many analyst uses a set of data
implementation allows the extended use of the actual data for
either server reporting or for transporting of data to new
application migration.

G. Transaction Anslysis

Extracting information from repository which usually
created after analysis is very useful for knowledge base
development. Migrating from straightforward interactions of
program with candidate application is done by this procedure.
This requires more programmatic analysis to ensure integrity of
objects. Software analysis enables existing business rule logic
to be reused and unchanged functionality. The program
interface business logic mainly requires modification to support
input validation parameters. Analytical input requirements are
major concerns for reengineering when using advanced
programming tools develop wrapping solutions. Information
systems analysts are experienced to enable increased use of
traditional systems components for reuse to new environments.
Enlarged complexity by duplicate business logic and
maintenance of data inconsistencies become difficult to
manage for post analysis procedures.

Program can be observed as the point of integration rather
than simply as a means of accessing data using traditional

Asfa Praveen (IJEACS) International Journal of Engineering and Applied Computer Science

Volume: 01, Issue: 01, November 2016
ISBN: 978-0-9957075-0-4

www.ijeacs.com 20

transactional programs. Analysis procedures have to evolve for
transaction server to enable connectivity of lost data
identification. In order for the comprehension to get complete
use of evolved capabilities of leveraging candidate programs, it
must isolate communication logic from the outstanding
business logic for ease of implementation. Most analysts have
opted to delay this procedure to use the existing logic as a
program implementation. The continuing evolution of analysis
procedures results for possibilities of technology and business
logic should change at specific layer of concern. The loss of
control of the flows changes the demands on this program
analysis effort for migration. While many tools application
offer more refined integration of knowledge to repository but
this is not manual tracking solution.

H. Program Analysis Issues

Procedure of program analysis is for automatic extraction
of useful information from program and supply for further
extraction for knowledge generation. Data and program control
flow information are considered as major entity of observation
to understand the sequence of action. Some of the major issues
are:

a) Session establishment management

b) Performance and scalability

c) Control building

I. Sessions Establishment Management

One of the technical problems related with application
analysis solutions is to find out the differences between the
session-based management of applications and the session-less
management for networked program [10]. The transaction
analysis solution must assure session establishment to client
program and interactions, to maintain the integrity of the data,
application, and sessions.

J. Control Building

Analysis procedure implements methods through a more
traditional ways to call for existing procedural program
encapsulation and control integrity. Comprehension depending
on the current implementation of the program design and
logical framework, reengineering the interface may be applied
for that. Program modules are mostly easiest to track the flow
of control, or encapsulate, because they are probably designed
to independent connected modules. Encapsulating program
modules is the most difficult, because it normally needs
restructuring of existing program to enable external procedures
to be internally incorporation with suitable parameters

The following guidelines should follow in building control:

a) Object oriented analysis and implementation should
separate the data only to the methods that use them.

b) Program slicing tools are required to extract business
logic. Object identification is not clear from procedural
implementation.

c) Unstructured code must be corrected, to separate, code
slice with methods.

d) Naming validation is essential for more strong
association with attributes and methods.

e) Reengineering of complete application should not
solve the issue but need to connect the entities with
procedural framework as defined in control flow.

f) Deadlock need to be identified and removed from
program code structure and execution flow.

g) Traditional procedural programs control in many cases
uses the same flow in the same field for different code
segments, which results in different methods of
analysis. These field usage problems need to be
understood to enable proper separation of concern.

VI. CONCLUSION

Program analysis is an important and useful task for
program comprehension. Wrapper provides useful extensions
to the existing capabilities of the program for functionality
enhancement. Program comprehension is a necessary and
significant requirement; if the document of application is not
available at that time the comprehension procedures are very
useful to draw program control and logic design. This paper
has presented some useful methods and solutions for program
comprehension and elements analysis.

REFERENCES

[1] A. S. Alardawi and A. M. Agil, "Novice comprehension of Object-

Oriented OO programs: An empirical study," 2015 World Congress on
Information Technology and Computer Applications (WCITCA),

Hammamet, 2015, pp. 1-4.
doi: 10.1109/WCITCA.2015.7367057

[2] A. Shargabi, S. A. Aljunid, M. Annamalai, S. Mohamed Shuhidan and

A. Mohd Zin, "Program comprehension levels of abstraction for
novices," 2015 International Conference on Computer,

Communications, and Control Technology (I4CT), Kuching, 2015, pp.
211-215.

doi: 10.1109/I4CT.2015.7219568

[3] T. Roehm, "Two User Perspectives in Program Comprehension: End
Users and Developer Users," 2015 IEEE 23rd International Conference

on Program Comprehension, Florence, 2015, pp. 129-139.
doi: 10.1109/ICPC.2015.22

[4] F. Fittkau, S. Finke, W. Hasselbring and J. Waller, "Comparing Trace
Visualizations for Program Comprehension through Controlled

Experiments," 2015 IEEE 23rd International Conference on Program
Comprehension, Florence, 2015, pp. 266-276.

doi: 10.1109/ICPC.2015.37

[5] I. d. M. Lessa, G. d. F. Carneiro, M. J. T. P. Monteiro and F. B. e.
Abreu, "A Multiple View Interactive Environment to Support MATLAB

and GNU/Octave Program Comprehension," Information Technology -
New Generations (ITNG), 2015 12th International Conference on, Las

Vegas, NV, 2015, pp. 552-557.
doi: 10.1109/ITNG.2015.93

[6] A. Shargabi, S. A. Aljunid, M. Annamalai, S. M. Shuhidan and A. M. Zin,

"Tasks that can improve novices' program comprehension," 2015 IEEE
Conference on e-Learning, e-Management and e-Services (IC3e),

Melaka, 2015, pp. 32-37.
doi: 10.1109/IC3e.2015.7403482

[7] R. Kadar, S. M. Syed-Mohamad and N. Abdul Rashid, "Semantic-based

extraction approach for generating source code summary towards
program comprehension," 2015 9th Malaysian Software Engineering

Asfa Praveen (IJEACS) International Journal of Engineering and Applied Computer Science

Volume: 01, Issue: 01, November 2016
ISBN: 978-0-9957075-0-4

www.ijeacs.com 21

Conference (MySEC), Kuala Lumpur, 2015, pp. 129-134.

doi: 10.1109/MySEC.2015.7475208

[8] X. Liu, X. Sun, B. Li and J. Zhu, "PFN: A novel program feature network
for program comprehension," Computer and Information Science

(ICIS), 2014 IEEE/ACIS 13th International Conference on, Taiyuan,
2014, pp. 349-354.

doi: 10.1109/ICIS.2014.6912158

[9] Y. Liu, X. Sun, X. Liu and Y. Li, "Supporting program comprehension
with program summarization," Computer and Information Science

(ICIS), 2014 IEEE/ACIS 13th International Conference on, Taiyuan,
2014, pp. 363-368.

doi: 10.1109/ICIS.2014.6912159

[10] N. Saroni, S. A. Aljunid, S. M. Shuhidan and A. Shargabi, "An empirical
study on program comprehension task classification of novices," 2015

IEEE Conference on e-Learning, e-Management and e-Services (IC3e),
Melaka, 2015, pp. 15-20.

doi: 10.1109/IC3e.2015.7403479

© 2016 by the author(s); licensee Empirical Research Press Ltd. United Kingdom. This is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license.
(http://creativecommons.org/licenses/by/4.0/).

