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Abstract 

The audit profession currently faces several challenges to improve audit quality and efficiency. In 
response to these challenges, audit firms have invested considerably in implementing emerging technology. 
Although technological innovation may improve efficiency and effectiveness of operations, using these 
technologies creates several threats, which, if not adequately addressed by auditors, may harm audit quality, 
efficiency, and the professional development of the auditor. This paper performs a qualitative analysis of prior 
literature regarding the threats created by audit firms implementing emerging technology. These threats 
include concerns related to the integrity and security of data inputs, the auditor placing too much reliance on 
technology to the detriment of their professional development and exercise of professional judgement, a 
shortage of skills, the costs of technology implementation, disruptions to the status quo of the audit profession 
and auditing standards potentially being outdated. This paper adds value firstly by helping to determine how 
technology impacts the future of the auditing profession and secondly, by helping firms determine whether to 
invest in new technologies by providing a comprehensive overview of the threats resulting from such a 
decision. 
 

Introduction 
Dawn of the Fourth Industrial Revolution 

Technological advances over time have improved mechanical production (Industry 1.0), 
distribution of electrical power generation (Industry 2.0) and the development of digital systems to 
automate routine tasks and duties (Industry 3.0) (Schwab, 2016; Veerankutty et al., 2018). These technical 
advances, particularly those in the field of computer science, have ushered in the Fourth Industrial 
Revolution (Industry 4.0), and created the processing speed and power for breakthroughs in new 
emerging technologies (Hashimoto et al., 2018) to allow humans and computers to collaborate and 
integrate in ways not previously thought possible (Schwab, 2016), thus allowing businesses to conduct 
their operations with greater efficiency and effectiveness (Beata, 2018; Schwab, 2016; Veerankutty et al., 
2018). Audit firms are no different and accordingly have made significant investments, particularly the 
‘Big 4’ audit firms, to implement these emerging technologies in their audit practices (Deloitte, 2020; EY, 
2020a; KPMG, 2020; PwC, 2019). However, before audit firms can realise the full extent of the benefits 
from using emerging technology, they must be aware of and respond to the threats these emerging 
technologies present.  

 

The rationale for audit firms to implement emerging technologies  
Auditors are constantly challenged to reduce audit fees (Asthana et al., 2018) and improve audit 

quality (Botic, 2018; Harris, 2016) while managing a significant amount of work (Persellin et al., 2019) in 
limited time (Ferguson, 2016; Persellin et al., 2019) and with limited resources at their disposal (Persellin et 
al., 2019). To address these challenges, audit firms have explored using emerging technologies (Harris, 
2017).  

Furthermore, as audit clients adopt these emerging technologies to aid decision making in their 
businesses, auditors will need to adopt advanced analytics to address the risks arising from new but 
complex technologies (Alles, 2015; Appelbaum et al., 2017) and meet their client’s expectations (Alles, 
2015).  
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Research question 
By focusing on the emerging technologies covered most extensively in academic literature and 

mainstream media, this paper provides a detailed qualitative analysis to interrogate the following 
research question:  

“How have the threats from emerging technologies such as artificial intelligence (AI) (including 
data analytics), robotics process automation and blockchain affected the auditing profession, audit firms 
and/or the audit process?”  

To determine the scope for how this paper attempts to answer this question, a few broad terms in 
the research question need to be defined, specifically, “artificial intelligence”, “robotics process 
automation” and “big data”. 

 

Definitions 
Artificial intelligence 

The Institute of Electrical and Electronics Engineers Standards Association Corporate Advisory 
Group defines AI in the IEEE Guide for Terms and Concepts in Intelligent Process Automation (2017:12) as: 

“The combination of cognitive automation, machine learning, reasoning, hypothesis generation and 
analysis, natural language processing, and intentional algorithm mutation producing insights and 
analytics at or above human capability.” 

AI enables machines to think like humans and perform functions that require human intelligence 
such as problem-solving, recognition of text, speech and images, reasoning, and learning (Copeland, 
2020). AI also allows computers to adapt to their environment (Copeland, 2020).  

Hashimoto et al. (2018) categorise AI into four further divisions, namely machine learning, artificial 
neural networks, natural language processing and computer vision. 

Machine learning is defined in the IEEE Guide for Terms and Concepts in Intelligent Process Automation 
(2017:14) as: 

“Detection, correlation, and pattern recognition generated through machine-based observation of 
human operation of software systems along with ongoing self-informing regression algorithms for 
machine-based determination of successful operation leading to useful predictive analytics or prescriptive 
analytics capability.” 

Machine learning, at its core, focuses on how machines learn from data by recognising patterns in 
data to improve future performance (Alpaydin, 2016; Hashimoto et al., 2018).  

Artificial neural networks, a branch of machine learning, simulate the human brain by receiving 
data inputs and then processing the data to produce an output (Deo, 2015). Its emergence has played a 
vital role in developing many AI applications (Hashimoto et al., 2018). 

Natural language processing is an AI application regarding how computers process and analyse 
written or spoken language. Applications of natural language processing include its use in search engines, 
such as Google, speech and document categorisers and virtual assistants such as Apple’s Siri (Quarteroni, 
2018).  

Computer vision emphasises how machines understand images and videos, thus emulating a 
human’s ability to recognise objects and scenes. Popular computer vision applications include fingerprint 
recognition, motion capture, surveillance, optical character recognition and machine inspections (Szeliski, 
2011). 

 

Robotic process automation 
Robotic process automation is defined in the IEEE Guide for Terms and Concepts in Intelligent Process 

Automation (2017:11) as: 
“A preconfigured software instance that uses business rules and predefined activity choreography 

to complete the autonomous execution of a combination of processes, activities, transactions, and tasks in 
one or more unrelated software systems to deliver a result or service with human exception 
management.” 

In essence, robotic process automation allows rules-based human tasks to be automated by robots 
(Moffitt et al., 2018). 
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Big data 
Common features of “big data” definitions tend to encompass large data sets consisting of different 

types of data from various sources. However, Gandomi and Hader (2015) and Favaretto et al. (2020) note 
that there is no official “big data” definition. 

Gartner (2012) defines “big data” as information assets that are high-volume, high-velocity and/or 
high-variety and which require new time and cost-efficient methods of data processing that result in 
greater insight, ability to make decisions and automating of processes. 

Using this definition, Favaretto et. al (2020) explain that the definition of big data comprises three 
common characteristics, namely volume, velocity, and variety. Volume refers to a large amount of data 
but with no consensus on what is considered “big”, while velocity refers to the exponential rate at which 
data is produced and processed. Lastly, variety denotes the different types of data that are accumulated 
from various sources such as administrative data, social media content, photographs, and videos. 
Gandomi and Haider (2015) argue that characteristics such as velocity and variety are equally important 
as volume. 

Other definitions from internationally renowned organisations and bodies include the following: 
The National Science Foundation, established by the United States Congress, defines “big data” as: 

“Large, diverse, complex, longitudinal, and/or distributed data sets generated from instruments, 
sensors, Internet transactions, email, video, click streams, and/or all other digital sources available today 
and in the future.” (National Science Foundation, 2012:2)  

“Data that challenge existing methods due to size, complexity, or rate of availability.” (National 
Science Foundation, 2014:3). 

 

The European Commission (2016:1) refers to “big data” as: 
“Large amounts of different types of data produced from various types of sources, such as people, 

machines or sensors. This data could be climate information, satellite imagery, digital pictures and videos, 
transition records or GPS signals. Big Data may involve personal data: that is, any information relating to 
an individual, and can be anything from a name, a photo, an email address, bank details, posts on social 
networking websites, medical information, or a computer IP address.” 

Lastly, the Association of Certified Chartered Accountants (2020) defines “big data” as very sizeable 
data sets or collections of data that can be analysed specifically for patterns, trends, or linkages, with 
particular reference to human conduct and communications. 

Other features such as versatility, vitality, exhaustivity and extensionality have also been 
considered as features of big data (Favaretto et al., 2020). 

Certain academics and practitioners have incorporated the techniques used to analyse the data sets 
as part of the “big data” definition (Favaretto et al., 2020), however, Salijeni et al. (2018) distinguish those 
techniques as a separate concept referred to as “big data analytics”. 

For this paper, “big data” is used within the context of the three common characteristics provided 
by Favaretto et. al (2020) – volume, velocity, and variety – while the term “big data analytics” refers to the 
techniques for analysing the datasets, consistent with Salijeni et al. (2018). 

 

Research design 
This paper is structured as follows. The next section describes the methodology used; thereafter, the 

literature review identifies and discusses the key threats of artificial intelligence, big data analytics, 
robotics process automation and blockchain to audit firms, the audit industry, and the audit process.  

The substantial number of threats facing audit firms poses a challenge in attempting to satisfy this 
paper’s research question. Therefore, it focuses only on the key threats, which helps provide a more 
valuable and detailed analysis. Due to practical limitations, only those threats that recur in the prior 
literature have been highlighted and analysed. 

Opposing views are compared in an attempt to provide a detailed analysis to answer the paper’s 
core research question. Lastly, the conclusion provides closing arguments, highlights the paper’s 
limitations, and suggests areas for further research. 

 

Methodology 
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The paper used directed content analysis to provide greater clarity on emerging technology threats 
to the auditing profession, audit firms and the audit process. To focus future research questions, prior 
literature was used to collate, summarise, and analyse studies, which broadened the usual goal of directed 
content analysis, which is to extend theory (Hsieh & Shannon, 2005). 

Google Scholar and University of Cape Town library databases were used to start the online sample 
selection. All papers and published reports on emerging technology in auditing were identified. Relevant 
information was ascertained from the studies’ abstracts. Supplementary information was accessed from 
reputable websites of the ‘Big 4’ audit firms and professional accounting bodies, due to the newly 
developing stature of emerging technology. The selected literature was then reviewed in terms of the 
research question. 

 

Literature review 
Introduction 

The literature review provides a detailed analysis of the threats facing an audit firm implementing 
emerging technologies into the audit process. Firstly, reasons for the choice of threats are outlined. The 
literature review is then divided into sections in which individual threats are analysed and placed in the 
context of current and prior literature. 

 

Key threats 
Reliability, compatibility, and security of data inputs 

AI requires a significant amount of high-quality data to operate effectively. The output produced by 
AI is thus only as good as the data input. A lack of data or data of inferior quality therefore affects AI’s 
performance levels (Obermeyer & Emanuel, 2016).  

ISA 500 requires information used to perform audit procedures to be tested for accuracy and 
completeness. This test can be performed either as part of the audit procedure itself or it can be carried out 
before using the information to perform the audit procedure; for example, testing the operating 
effectiveness of the controls over the preparation and maintenance of information and then using the 
information to perform substantive procedures (International Auditing and Assurance Standards Board, 
2009). External audit evidence is generally regarded as more reliable than internally generated audit 
evidence, but external big data is unreliable given the limited fields stored (Cangemi & Brennan, 2019) 
causing difficulties with verifying its provenance (Appelbaum, 2016). Therefore, if data is input into AI 
applications, auditors – unless auditing the accuracy and completeness of the data as part of their audit 
procedures – are first required to audit the input data for accuracy and completeness. This poses several 
complications for auditors as the sheer volume, complexity and variety of big data may pose a challenge 
over verifying its accuracy and completeness before using AI to analyse the data. The AI analysis output 
is therefore limited by the nature and accuracy of the data available (Hashimoto et al., 2018).  

Another concern associated with data input is that the data may not be compatible with 
applications as it lacks structure and has no standardised labels, which may cause difficulty in collecting 
and merging data (Jiali & Khondkar, 2017; Moffitt et al., 2018). 

The collection, transmission and storage of personal data may also be limited or restricted due to 
certain laws and regulations (Zemankova, 2019). 

 

Over reliance on technology and a shortage of skills/development 
Evaluation of the data may lead to unintended consequences, which need to be balanced against the 

benefits realised from using AI (Kend & Nguyen, 2020). Algorithms may identify false or misleading 
correlations in the data, or correlation may be confused with causation leading to inappropriate 
conclusions and actions (Obermeyer & Emanuel, 2016). Users of financial statements, such as investors, 
may be harmed financially and reputationally if auditors arrive at inappropriate decisions based on 
biased algorithms (Zemankova, 2019). 

Too much reliance may be placed on the application’s ability without a true understanding of how 
the application arrived at those results. This phenomenon is referred to as the “black box effect” whereby 
the inputs into and outputs from the AI application can be observed but there is little to no knowledge of 
its internal workings (Hashimoto et al., 2018). This may be due to the auditor not having the necessary 
skills to understand how the applications work.  
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Auditors’ lack of skills and competence appears to be a significant barrier to audit firms 
implementing big data analytics in their audit process (Salijeni et al., 2018).  

Rose et al. (2017) examined how the timing of the evaluation of analytical results from big data 
software affects the application of professional judgement and the ability of auditors to make decisions. 
Their sample included 127 audit practitioners from ‘Big 4’ audit firms. Their findings indicate that when 
analytical results from big data software are viewed before auditors have developed an expectation of the 
results of the analytical review procedures from traditional audit procedures, the auditors often fail to 
recognise patterns in the big data analytical results. The results of their study suggest that auditors derive 
more benefit from using big data analytical results after they have developed an expectation of the results 
derived from evidence obtained from traditional audit procedures. These findings could suggest that 
auditors lack the necessary skills to use big data analytics effectively. Audit practitioners from smaller 
audit firms also expressed concerns regarding a lack of knowledge (Dagilienė & Klovienė, 2019). 
Similarly, Omitogun and Al-Adeem (2019) found evidence that auditors from developing countries are 
aware of the importance of and the need to incorporate big data analytics into the audit process, but they 
lack the necessary analytical skills and are unfamiliar with latest big data analytical tools. 

Individuals with advanced analytical and programming skills may be needed to supplement the 
lack of auditors’ skills. However, as more businesses adopt big data for their decision-making, audit firms 
may have to compete against other businesses and may find it difficult to source personnel with the 
required skills (Alles & Gray, 2014). Furthermore, if auditors lack the relevant programming skills, they 
will have to place reliance on others to configure and maintain the programme. If programming errors 
have been made, the auditor may arrive at faulty judgements based on the output provided, thereby 
decreasing audit effectiveness (Zhang, 2019). In addition, if the programmes are not well maintained, they 
could be more susceptible to manipulation by hackers leading to the theft or destruction of confidential 
client information (Cangemi & Brennan, 2019; Zhang, 2019).  

Omitogun and Al-Adeem (2019) suggest that auditors’ lack of analytical skills may be due to most 
accounting degrees and qualifying exams not emphasising big data analytics. Richin et al. (2017) argue 
that while big data analytics enhance an auditor’s skills, academics, professional bodies, and regulatory 
bodies must make the necessary adjustments to address deficiencies in their qualifications and standards. 
Kend and Nguyen (2020) propose future research should consider whether accounting degrees are 
structured to produce graduates with the necessary skills and knowledge to perform audits using AI, 
robotics process automation and big data analytics.  

By placing excessive reliance on AI, auditors might end up being de-skilled as they play a more 
passive role in making decisions with limited use of their professional judgement (Sutton et al., 2018).  

Salijeni et al. (2018) question whether audit firms operating in a big data era are a suitable 
environment to develop professionals if analytical skills are emphasised in the future. Turley et al. (2016) 
and Sutton et al. (2018) note that automation of audit processes may undermine the development of 
professional personnel to exercise professional judgement effectively. 
 

Auditors becoming redundant or having to alter their roles 
Synergies between technology can lead to the development and adoption of new technology that 

can transform how things are done (Hashimoto et al., 2018).  
Clohessy and Acton (2019) claim that blockchain could be a disruptive technology with a 

widespread impact on various businesses in the future. A 2019 Global Blockchain survey run by Deloitte 
had 56 percent of respondents echoing Clohessy and Acton’s (2019) sentiments and believing that 
blockchain could potentially disrupt their businesses (Deloitte, 2019b). Blockchain use will potentially 
cause a shift from placing faith in people to accurately record and maintain transactions in separate 
ledgers to trusting the nature of the system to automatically verify and secure transactions in a 
decentralised digital ledger (Nofer et al., 2017). Although mainstream adoption rates are increasing (Kend 
& Nguyen, 2020), the rate of adoption is still relatively low (Clohessy & Acton, 2019). 

Blockchain is a tamper-proof digital database of transactions (“a digital ledger”) that requires 
consensus among computers on a peer-to-peer network before the transaction can be recorded in the 
database. The database is not centrally administered, and a copy of the database is stored on each 
computer in the network, making it easily viewable at all times by all users. The blocks contain digital 
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information about the transaction and blocks are linked together via a chain to form a series of events. 
Each block uses a hash created from an algorithm (similar in concept to a unique transaction ID) that 
allows the data to be authenticated. Each subsequent block stores the previous block in the chain’s hash. If 
the original data is changed, a new hash is created for the altered data causing the altered data’s hash to 
fail to match the original data’s hash (Beck, 2018; Nofer et al., 2017; Rozario & Thomas, 2019). As data 
cannot practically be altered due to the nature of the system, blockchain facilitates triple-entry accounting 
by acting as an intermediary to automatically authenticate the transaction and thus increase the reliability 
and transparency of record-keeping (Dai & Vasarhelyi, 2017).  

Schmitz and Leoni (2019) performed a thematic analysis of academic literature and professional 
reports and the websites of the ‘Big 4’ audit firms and internationally recognised accounting bodies. The 
authors claim that the shift in trust to blockchain has led to many academics and practitioners believing 
that auditors will become obsolete. However, Schmitz and Leoni (2019) suggest that these claims may not 
be valid as blockchain only provides assurance that the transaction has been recorded, not that it has 
occurred. Likewise, the underlying transaction may not have been authorised (Cangemi & Brennan, 2019). 
In a global survey of 600 participants, PwC (2018) reports that 45 percent of respondents believed a lack of 
trust in the technology could delay the adoption of blockchain. Auditors will therefore still be needed to 
provide assurance that the underlying transactions are valid (Cangemi & Brennan, 2019; Schmitz & Leoni, 
2019).  

Although blockchain may not cause auditors to become redundant, they will be required to 
fundamentally alter their role in a blockchain environment (Cangemi & Brennan, 2019; Dai & Vasarhelyi, 
2017; Rozario & Thomas, 2019; Schmitz & Leoni, 2019). Firstly, blockchain could cause a shift from the 
traditional assurance model of auditors examining historical data to a continuous assurance model where 
parties, including but not limited to the auditor, share documents via blockchain and can verify the 
transactions in the blockchain in real-time (Cangemi & Brennan, 2019; Dai & Vasarhelyi, 2017; Rozario & 
Thomas, 2019). While this may cause the importance of auditors in verifying certain transactions to 
decrease, auditors will be needed for other roles that require the exercise of professional judgement (Dai & 
Vasarhelyi, 2017). For instance, if payment is recorded, the auditor’s judgement will be required to 
determine if the corresponding contra-account has been correctly classified (ICAEW, 2017). Other roles 
could include providing assurance services over the system’s ability to record transactions securely and 
maintain integrity (Boillet, 2017; Dai & Vasarhelyi, 2017). Furthermore, auditors will need to vet external 
parties who provide online services for blockchain to ensure they offer reliable services according to all 
laws and regulations (Boillet, 2017). 

Secondly, auditors will be needed to render services related to smart contracts, another blockchain 
application as there are claims that smart contracts will be the future of doing business (EY, 2020b). A 
smart contract has the contract’s terms and conditions written into the source code of a program stored on 
the blockchain. Once certain conditions occur, the contract automatically executes (EY, 2018). Auditors 
could play a role in creating smart contracts that are used in a system of internal control and to examine 
data using sophisticated analysis techniques (Dai & Vasarhelyi, 2017). Following EY’s launch of its testing 
and security services for smart contracts, vulnerabilities in the source code are being identified by EY (EY, 
2019). In addition to assurance services for smart contracts, auditors may offer new services related to 
assuring the blockchain system and validating digital assets (Deloitte, 2019a). Lastly, as the blockchain 
requires consensus among various users before being recorded, the recording of the transaction can easily 
be verified and automated. This could result in a shift for auditors from verifying the recording of 
transactions to focusing on aspects of the audit that cannot be automated (Boillet, 2017). Schmitz and 
Leoni (2019) claim that businesses mostly limit recording their transactions on blockchain to those linked 
to trade receivables and payables. This would suggest that auditors would still be needed to perform a 
traditional audit for those transactions not recorded on blockchain (Cao et al., 2019; Rozario & Thomas, 
2019). However, auditors need to be cognisant of how their roles may be adapted and thus make the 
necessary adjustments to adapt within a blockchain environment to remain relevant. 

Emerging technology may not replace the audit outright, but it may attract non-audit firms to the 
audit industry, causing the traditional audit firm to become redundant. Large multi-national companies 
who specialise in technological innovation, such as Google, could easily leverage the capabilities of 
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emerging technology and apply them in the audit process. The audit industry must therefore adequately 
manage the benefits and threats created by blockchain and other emerging technologies (Richins et al. 
2017). 

 

Costs creating a barrier for adoption 
Emerging technology will require a significant investment in resources, both financial and non-

financial. The ‘Big 4’, with their large international networks, have greater access to resources than small 
audit firms and will thus be better placed to service their clients’ needs using emerging technology. This 
would decrease competition within the audit industry as resource constraints would cause small firms to 
struggle to remain competitive and meet their clients’ expectations (Kend & Nguyen, 2020). Cao et al. 
(2019) claim that there are indirect costs associated with the adoption of blockchain by auditors such as 
the loss of clients who prefer to be audited using traditional methods. Cao et al. (2019) suggest that despite 
the numerous benefits, which include a cost-saving from audit efficiency, the upfront investment costs 
associated with blockchain may limit its adoption by auditors. 

 

Technical standards outdated 
Salijeni et al. (2018) claim that the lack of guidance in regulations and professional standards may 

inhibit auditors from fully embracing and adopting technological advances. Audit practitioners noted that 
the regulators and standard setters may be slow to make the necessary adjustments to keep up with 
technological advances (Kend & Nguyen, 2020). Rozario and Thomas (2019) suggest that it is unclear what 
changes should be implemented to the auditing standards to facilitate using more advanced analytical 
tools. Alles (2015), however, states that auditors do not use their full discretion in interpreting the 
requirements of the current iteration of the auditing standards and they should view big data as a means 
to gather audit evidence to satisfy the current auditing standards requirements, rather than as a new 
development that requires auditing standards to be revised to facilitate big data’s use in the audit process. 
Regulators claim that the current iteration of auditing standards can be applied to audits using big data 
analytics but may need additional context for concepts such as materiality and risk assessment when 
considered within a big data environment (Salijeni et al., 2018). 

However, Kend and Nguyen (2020) call for audit standards to be revised to facilitate the adoption 
of and address the threats created by the use of emerging technology by auditors. Omitogun and Al-
Adeem (2019) propose research to explore how professional auditing standards can provide requirements 
for data security and safeguards against ethical threats.  

 

Conclusion 
This paper analysed the effect of the threats created by emerging technologies on the auditing 

profession, audit firms and the audit process. This analysis provided value in two ways. Firstly, it helped 
determine how technology impacts the future of the auditing profession. Secondly, this paper helps firms 
assess whether to invest in new technologies by providing a comprehensive overview of the threats 
resulting from such a decision.  

These threats relate to the reliability, compatibility and security of data input concerns, the auditor 
placing too great a reliance on technology, a shortage of skills required to use emerging technology 
effectively, the costs of emerging technology creating a potential barrier for adoption, auditors becoming 
redundant or having to fundamentally alter their current roles and professional auditing standards not 
providing adequate guidance to allow auditors to use new technologies. 

In an ever-changing environment, it is of paramount importance for auditors to maintain relevance 
to continue to provide a valuable service. This will not only improve the overall credibility of financial 
statements, but it will also contribute to the long-term viability of the auditing profession.  In 
accomplishing this, auditors will be required to address some, if not all, of these identified threats. 

 

Limitations and areas for future research 
As noted by Salijeni et al. (2018), there is limited empirical evidence on the effects of emerging 

technology on the audit process and profession. As such, future research could add value by performing a 
quantitative analysis to determine the validity of an individual threat to audit firms and the auditing 
profession. As no attempt has been made to determine whether the threats outweigh the benefits created 
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or vice-versa, and no conclusion has been formed as to whether audit firms should engage in 
technological implementation, this presents scope for future research. 
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