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                                                                                  Abstract 

 

If the items have high reliability then to check the lifetime of items under normal use 

condition takes more time and cost in comparison with the accelerated condition. The 

items put higher stress than the usual level of stresses to generate early failures in a 

short period to reduce the costs involved in the testing of items without any change in 

the quality. This study is based on constant stress partially accelerated life tests for 

Exponentiated Exponential distribution using multiple censoring schemes. The 

maximum likelihood estimates and asymptotic variance and covariance matrix are 

obtained. The confidence intervals for parameters are also constructed. At last, a 

simulation technique is used to check the performance of the estimators. 

 

Keywords: Constant stress partially accelerated life tests, Exponentiated Exponential 

distribution, Multiple censoring, Fisher Information Matrix, a Simulation study. 

 

 

I. Introduction 
 

In the present market situation, the manufacturing designs are bettering day by day because there 

is a big change in technology. If an item has high reliability than it is too much tough to obtain 

information about the lifetime of items or products under normal usage condition at the time of 

testing. In this type of situation, the accelerated life test (ALT) is the best choice to get information 

on the life of the items or products. ALT is used to get information on items life or products life in 

a short period with a shortage of cost by testing them at accelerated conditions after this testing 

them on normal use conditions to induce early failures. These conditions are referred to as stresses. 

The stresses may be in the form of temperature, voltage, force, etc.  

Normally, three types of stresses are applied in accelerated life testing, such as constant 

stress, step-stress, and progressive stress. Here we are focusing only on constant stress. In constant 

stress accelerated life test, the products or items are operated at fixed levels of stress throughout 

the testing. From ALT, two types of data are obtained, such as complete and censored data. In the 

complete data, the lifetime of each unit is known, but the lifetime of each unit is unknown in 

censored data. A mathematical model which is related to the lifetime of an item or product and 

stress is either known or can be assumed in ALT. There are many situations in which these 

relationships are unknown, and we can not conclude these relationships. This means that data can 

not be extrapolated to use conditions which are obtained from ALT. Such situations where the test 

items are run at both normal and higher than normal stress conditions, the partially accelerated life 

test (PALT) is used. In PALT, two main methods are used by reliability practitioners such as 
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constant stress partially accelerated life test (CSPALT) and step-stress partially accelerated life test 

(SSPALT). The products or items are tested either usual or higher than usual condition until the 

test is ended in CSPALT. 

In many situations, the lifetime experiment could out of control due to many reasons like 

components of a system may break accidentally. In type-I censoring (time censoring) scheme, the 

test is terminated after a fixed amount of time, and in type-II censoring (item censoring), the test is 

terminated after a fix proportion of items.  As we know that the removal of items or components 

from the test during testing is possible in the progressive type censoring scheme, while type-I and 

type-II censoring schemes don’t allow the removal of items or components from a test during 

testing. In this type of situation, the multiple censoring schemes are the best choice for an engineer 

or reliability practitioner because multiple censoring schemes allows the removal of items from the 

test during the testing at any situation or any time. We define multiple censoring schemes as when 

the testing of items or components fails because of more than one reason, then multiple censoring 

occurs. Tobias and Trindada [1] observed that the type-I and type-II censoring schemes are a 

special case of multiple censoring schemes. 

There is much literature available on PALT with constant stress with many types of 

censoring schemes. Abd El-Raheem et al. [2] presented a study on constant stress accelerated life test with 

the use of geometric process when the lifetime of test units follows Extention of Exponential distribution 

under the type-II progressive censoring scheme. Kamal et al. [3] presented a study on designing of partially 

accelerated life test when the lifetime of items follows Inverted Weibull distribution with constant stress 

under the type-I censoring scheme. Abdullah M. [4] dealt with parameters estimation when the lifetime of 

units follows Generalized Half Logistic distribution for progressive type-II censored data. Zhang and Fang 

[5] dealt with an estimation of acceleration factor when the lifetime of units follows Exponential distribution 

under CSPALT based on type-I censored data. A new approach of constructing the exact lower and upper 

confidence limits is proposed by them for the acceleration factor. Sadia and Islam [6] presented a study on 

CSPALT plans when the lifetime of units follows Rayleigh distribution based on type-II censored data. 

Tahani and Areej [7] dealt with an inference on CSPALT under progressive type-II censored data based on a 

mixture of Pareto distribution. Mohamed et al. [8] presented a study on CSPALT using progressive type-II 

censored data when the lifetime of items follows Modified Weibull distribution. They discussed two bootstrap 

confidence intervals, which are called bootstrap-t and bootstrap-p. Xiaolin and Yimin [9] presented a study 

on CSPALT using the masked series system when the lifetime of components follows Complementary 

Exponential distribution based on progressive type-II censoring. Ismail [10] presented a study on CSPALT 

for Weibull distribution based on hybrid censoring scheme. He makes a statistical inference by using two 

methods; maximum likelihood and percentile bootstrap method. Nassar and Elharoun [11] dealt with an 

inference on CSPALT for Exponentiated Weibull distribution in the case of multiple censored data. Amal et 

al. [12] presented a study on CSPALT for inverted Weibull distribution in the case of multiple censoring 

scheme. Cheng and Weng [13] estimated parameters under multiple censoring scheme when the lifetime of 

items follows Burr XII distribution.  

The paper organized as follows. The model description and test procedure are given in section II. The 

basic assumptions for CSPALT are also given in section II.  The point Estimation is given in section III. In 

this section, the likelihood function of the model under multiple censoring schemes is observed, and the 

Fisher Information matrix is also investigated in this section. In section IV, the confidence intervals are 

developed. The simulation study is given in section V. Finally, the conclusions are made in section VI.  

   

 

II. Model Description and Test Procedure 

 
I. Exponentiated Exponential Model 

 

The Exponentiated Exponential distribution is commonly known as the Generalized Exponential 

distribution. This distribution is a particular member of Exponentiated Weibull distribution under 
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two parameters form [14]. It is quite effective in analyzing several lifetime data, mainly in place of 

Gamma and Weibull Distribution in two parameters case. The above three distributions coincide 

with Exponential distribution in one parameter form if the value of the shape parameter becomes 

one. The Exponentiated Exponential plays an important role in reliability analysis because of its 

simplicity. If the lifetime of the item follows the Exponentiated Exponential distribution, then the 

test procedure for CSPALT under multiple censoring schemes is as follows. 

 

The probability density function ( pdf ) of Exponentiated Exponential distribution is given as 

 

 1

1 )1()( 
  ii tt

i eetf      0,, it  ; 1,...,2,1 ni 
                                (1) 

 

Where,  and  are shape, scale parameters respectively. The ith  observed lifetime of the test 

under normal condition item is denoted by  it . 

 

The cumulative density function )(cdf  of Exponentiated Exponential distribution is given as 
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The reliability function of Exponentiated Exponential distribution is given as 
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The hazard function of Exponentiated Exponential distribution is given as 
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Under the accelerated condition, the probability density function )(pdf of a lifetime  TX 1  is 

given as 
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Under the accelerated condition, the cumulative density function )(cdf of a lifetime  TX 1  is 

given as 

 

 


)1()(2
jxt

j exF


                                                                (4) 

 

The reliability function of a lifetime, TX 1  under accelerated condition, is given as 
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The reliability function of a lifetime, TX 1  under accelerated condition, is given as 
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Where 
jx is jthobserved lifetime under the case of the accelerated condition. 

 

II. Assumptions 

 

The basic assumptions for CSPALT are given as 

 

• The lifetimes of items iT  1,...,2,1 ni   are independent and identically distributed random 

variable with probability density function given in equation (1), which is allocated to normal 

condition. 

• The lifetimes of items 
jX  2,...,2,1 nj  are also independent and identically distributed 

random variable with probability density function given in equation (3), which is allocated to 

accelerated condition. 

• iT  and iX  are mutually independent also. 

• 1n and 2n are the total numbers of items at normal and accelerated condition, respectively. 

 

III. Parameter Estimation 

 
I. Point Estimates 

 

In this section, we use the maximum likelihood (ML) technique for estimating parameters. ML 

technique is the most important technique for fitting the statistical model; it has many interesting 

properties like asymptotic unbiased, asymptotic efficiency and asymptotic normality, etc.  

 

)()2()1( ... nttt   are supposed observed values of the total lifetime T at the normal condition and 

)()2()1( ... nttt  are the supposed observed values of the lifetime X at the accelerated condition.  

 

Then the likelihood of Exponentiated Exponential distribution under multiple censored data is 

given as 
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fi ,1, , 
ci ,1, , 

fi ,2, , 
ci ,2,  are indicator functions. The values of indicator functions are given as 
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The log-likelihood function is simply the natural logarithm of the likelihood function and given as  
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Where LtL i ln),,,(   

 

The MLEs of ,  and   are obtained by differentiating log-likelihood function concerning ,  

and   respectively and equating to zero. Then the equations are given as 
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There is no closed solution of these nonlinear equations. So we use the Newton-Raphson technique 

for solving these equations.  

 

II. Fisher Information Matrix 

 

The Fisher Information matrix is the composition of negative second partial derivatives of log-

likelihood function and can be expressed as 
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The elements of Fisher-Information matrix is given as 
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The asymptotic variance-covariance is simply obtained by taking the inverse of the Fisher 

Information matrix. The asymptotic variance-covariance is given as 
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Where, AVar  and ACov stand for asymptotic variance, asymptotic covariance respectively. 

 

 

IV. Interval Estimates 
 

A confidence interval for parameters is a type of interval estimate, computed from the statistics of 

the observed data, that consist of the accurate value of an unknown population parameter. In other 

words, a confidence interval is simply the probability. So, a confidence interval means the 

probability that the value of a parameter will fall between the lower and upper bound of a 

probability distribution. Mostly, 90%, 95%, and 99% confidence levels are used.  

 

The two-sided confidence limits can be constructed as 

 

 















 1

)ˆ(

ˆ
zzp                                                     (13) 

 

This construction of two-sided confidence limits is for the maximum likelihood estimate ̂ of a 

population parameter ),,(   . In the above equation (13), z stands for )2/1(100  the 

standard normal percentile and  stands for the significance level. So, for a population parameter 
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 , an appropriate confidence limits can be obtained, such that 

 

    1)ˆ(ˆ)ˆ(ˆ zzp  

 

Where, lower confidence limit )ˆ(ˆ  zL  and upper confidence limit )ˆ(ˆ  zU   

 

V. Simulation Study 
 

In this section, we perform a simulation study to check the performance of the estimators having 

Exponentiated Exponential distribution using multiple censored data. This simulation study is 

done Monte Carlo Simulation technique by using R-Software. The means square error and bias are 

estimated to check the performance of estimators. The following steps are made for this simulation 

study. 

• First, we divide the total sample n into two parts, 1n  and 2n . nn 1  and )1(2  nn  

• Generate 
1,2,21,1 1

... nttt  and 
2,2,21,2 2

... nttt  random samples of size 1n  and 2n in 

normal and stress condition respectively from Exponentiated Exponential distribution. 

• We generate 1000 random of size 50, 100, 150 and 200 and choose the values of the parameters 

as   Case (I) )6.1,6.0,6.0(   , Case (II) )8.1,6.0,6.0(    

                 Case (III) )6.1,8.0,4.0(   , Case (IV) )8.1,8.0,4.0(    

• The acceleration factor and the distribution parameters are obtained for each sample and each 

set of parameters. The asymptotic variance and covariance matrix are also obtained for each 

set of parameters. 

• Finally, for confidence levels %99%,95 of acceleration factor, the two sides confidence 

limits and two parameters are constructed with the use of equation (13) for parameters ,

and  . 

 

 

Table 1: The values of Bias and MSE under the different size of samples for multiple censored data 

 

 

 

  

 

Parameters 

Case I 

)6.1,6.0,6.0(    

Case II 

)8.1,6.0,6.0(    

n  Estimates Bias MSE Estimates Bias MSE 

 

50 

  0.638 0.321 0.082 0.712 0.302 0.098 

  0.812 0.083 0.023 0.912 0.098 0.036 

  1.321 0.068 0.235 1.543 0.076 0.243 

 

100 

  0.616 0.310 0.092 0.743 0.298 0.094 

  0.823 0.078 0.019 0.843 0.088 0.034 

  1.313 0.576 0.206 1.654 0.0702 0.224 

 

150 

  0.602 0.297 0.076 0.765 0.287 0.087 

  0.801 0.065 0.014 0.921 0.784 0.045 

  1.304 0.521 0.184 1.432 0.687 0.286 

 

200 

  0.602 0.288 0.071 0.700 0.301 0.900 

  0.792 0.075 0.011 0.933 0.654 0.028 

  1.297 0.543 0.098 1.876 0.765 0.198 
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Table 2:  The values of Bias and MSE under the different size of samples for multiple censored 

data 

 

 

Table 3: Asymptotic Variance and Covariance Matrix of Estimators for Different Size of Samples 

under Multiple Censored Data 

 

  

  

Parameters 

 

 

Case III 

)6.1,8.0,4.0(    

Case IV 

)8.1,8.0,4.0(    

n  Estimates Bias MSE Estimates Bias MSE 

 

50 

  0.543 0.289 0.064 0.612 0.598 0.078 

  0.865 0.265 0.054 0.923 0.336 0.067 

  1.323 0.086 0.342 1.257 0.089 0.476 

 

100 

  0.564 0.265 0.608 0.645 0.566 0.065 

  0.843 0.200 0.046 0.946 0.289 0.065 

  1.456 0.076 0.298 1.345 0.081 0.398 

 

150 

  0.486 0.286 0.586 0.596 0.500 0.054 

  0.802 0.202 0.065 0.897 0.288 0.058 

  1.487 0.065 0.299 1.446 0.076 0.411 

 

200 

  0.598 0.254 0.566 0.665 0.456 0.066 

  0.843 0.198 0.0421 0.886 0.328 0.048 

  1.543 0.076 0.256 1.225 0.067 0.356 

  

Parameters 

Case I 

)6.1,6.0,6.0(    

Case II 

)8.1,6.0,6.0(    

 

n              

 

50 

  0.00632 0.00226 0.00456 0.00776 0.00211 0.00509 

  0.00321 -0.00784 0.00387 0.00224 0.00449 0.00277 

  0.00437 0.00298 0.04541 0.00443 0.00109 0.00118 

 

100 

  0.00576 0.00276 0.00432 0.00654 0.00210 0.00498 

  0.00227 -0.00876 0.00267 0.00221 0.00265 0.00176 

  0.00338 0.00234 0.00453 0.00343 0.00025 0.00101 

 

150 

  0.00465 0.00199 0.00365 0.00554 0.00189 0.00334 

  0.00176 -0.00998 0.00223 0.00176 0.00228 0.00116 

  0.00225 0.00178 0.00116 0.00225 -0.00987 -0.00554 

 

200 

  0.00356 0.00113 0.00294 0.00445 0.00156 0.00223 

  0.00114 -0.00887 0.00132 0.00114 0.00189 0.00115 

  0.00115 0.00117 0.00101 0.00112 -0.00998 -0.00776 
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Table 4: Asymptotic Variance and Covariance Matrix of Estimators for Different Size of Samples 

under Multiple Censored Data 

 

 

Table 5: At Confidence Level %99%,95 , the Confidence Bounds of Estimates at Different 

Size of Samples 

 

  

  

Parameters 

Case III 

)6.1,8.0,4.0(    

Case IV 

)8.1,8.0,4.0(    

n              

 

50 

  0.00332 0.00098 0.00543 0.00376 0.00076 0.00432 

  0.00254 0.00221 0.00065 0.00577 0.00981 0.00087 

   0.00443 0.00545 0.00334 -0.00654 0.00443 -0.00043 

 

100 

  0.00224 0.00065 0.00332 0.00331 0.00054 0.00224 

  0.00223 0.00188 0.00045 0.00443 0.00076 0.00066 

  0.00376 0.00332 0.00224 -0.00765 0.00411 -0.00066 

 

150 

  0.00202 0.00043 0.00223 0.00269 0.00044 0.00187 

  0.00123 0.00117 0.00032 0.00332 0.00387 0.00054 

  0.00321 0.00212 -0.00987 -0.00799 0.00332 -0.00098 

 

200 

  0.00187 0.00011 0.00165 0.00211 0.00012 0.00112 

  0.00115 0.00076 0.00011 0.00287 0.00225 0.00043 

  0.00234 0.00133 -0.00999 -0.00998 0.00225 -0.00076 

  

 

Para

met

ers 

Case I )6.1,8.0,4.0(     

 

 

 

  

Case I )8.1,8.0,4.0(     

 

 

 

 

  

Confidence 

Interval 

96.1z  

Confidence 

Interval 

58.2z  

Confidence 

Interval 

96.1z  

Confidence 

Interval 

58.2z  

n  Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

 

50 

  0.57 0.73 0.53 0.89 0.08 0.51 0.78 0.61 0.93 0.07 

  0.68 0.89 0.57 0.76 0.04 0.55 0.86 0.67 0.83 0.10 

  0.88 1.32 0.66 0.91 0.38 0.79 1.89 0.87 1.90 0.32 

 

100 

  0.59 0.67 0.55 0.84 0.09 0.57 0.84 0.73 0.99 0.09 

  0.61 0.75 0.66 0.80 0.06 0.61 0.82 0.62 0.79 0.06 

  0.77 1.34 0.73 0.88 0.43 0.98 1.56 0.97 2.11 0.35 

 

150 

  0.64 0.71 0.67 0.81 0.06 0.44 0.60 0.65 0.76 0.05 

  0.64 0.76 0.58 0.72 0.09 0.87 0.93 0.56 0.69 0.08 

  0.79 1.22 0.69 0.81 0.48 0.78 1.23 0.67 1.36 0.42 

 

200 

  0.59 0.67 0.71 0.79 0.08 0.56 0.65 0.54 0.67 0.06 

  0.55 0.63 0.69 0.82 0.03 0.74 0.82 0.65 0.76 0.09 

  0.88 1.01 0.61 0.73 0.35 0.77 1.02 0.68 1.11 0.36 
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Table 6: At Confidence Level %99%,95 , the Confidence Bounds of Estimates at Different 

Size of Samples 

 

 

 

VI. Conclusions 
 

This paper presented an inference on constant stress partially accelerated life tests for the 

Exponentiated Exponential distribution using multiple censoring schemes. The following 

observations are made based on the simulation study. The observations are 

 

• In the table (1) and (2), the MSE and bias of estimators are obtained in four cases, and we can 

observe that the sample size increases the values of bias and MSEs decreases. The maximum 

likelihood estimates have good statistical properties for all sets of parameters because this set 

has the smallest biases for all sample sizes. 

• In the table (3) and (4), the asymptotic variance and covariance matrix are obtained, and we 

can observe that the asymptotic variance-covariance of estimators decreases as sample size 

increases for the all sets of parameters. 

• In the table (5) and (6), the confidence limits of the intervals for the parameters and the 

acceleration factor at 95% and 99% are obtained. The standard deviation )( of estimators is 

also obtained. We can observe that the width of the interval decreases as sample size increases 

for all sets of parameters. 

 

 

  

  

 

Para

met

ers 

Case I 

)6.1,8.0,4.0(    

 

 

 

 

  

Case I V 

)8.1,8.0,4.0(    

 

 

 

 

 

  

Confidence 

Interval 

96.1z  

Confidence 

Interval 

58.2z  

Confidence 

Interval 

96.1z  

Confidence 

Interval 

58.2z  

n  Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

 

50 

  0.61 0.78 0.56 0.94 0.04 0.57 0.78 0.58 0.84 0.09 

  0.65 0.86 0.61 0.79 0.06 0.55 0.78 0.69 0.95 0.12 

  0.78 1.22 0.61 0.85 0.32 0.72 1.86 0.75 1.60 0.39 

 

100 

  0.55 0.69 0.61 0.79 0.08 0.68 0.94 0.64 0.79 0.08 

  0.56 0.71 0.77 0.89 0.07 0.68 0.87 0.62 0.79 0.10 

  0.66 1.23 0.63 0.78 0.37 0.78 1.36 0.97 2.11 0.42 

 

150 

  0.61 0.72 0.63 0.71 0.05 0.55 0.68 0.69 0.81 0.03 

  0.54 0.65 0.61 0.69 0.08 0.78 0.85 0.56 0.69 0.13 

  0.68 1.10 0.79 0.85 0.42 0.67 1.11 0.67 1.36 0.47 

 

200 

  0.55 0.62 0.65 0.72 0.02 0.64 0.71 0.65 0.69 0.07 

  0.59 0.66 0.65 0.76 0.05 0.64 0.69 0.68 0.79 0.02 

  0.72 0.81 0.69 0.76 0.37 0.86 1.02 0.79 1.19 0.39 
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