Tribology Online
Online ISSN : 1881-2198
ISSN-L : 1881-218X
Article
Numerical Analysis of Surface Force of Diamond-Like Carbon Surface Coated with Monolayer Lubricant Film
Kyosuke Ono
Author information
JOURNAL OPEN ACCESS

2018 Volume 13 Issue 6 Pages 301-310

Details
Abstract

Diamond-like carbon (DLC) is widely used as a hard, protective layer with a relatively low surface energy. In the head‒disk interface in magnetic disk drives, however, the DLC layer is coated with a monolayer perfluoropolyether lubricant with a high bond ratio to avoid DLC‒DLC contact and to secure head/disk wear reliability. In this study, we theoretically analyzed the effect of lubricant thickness and bond ratio on the adhesion force between the head‒disk interface (HDI) in a mono/submono-layer thickness regime. It was found that the adhesion force had the lowest sensitivity to lubricant thickness variations at a 0.85 bond ratio. In addition, the maximum adhesion force was minimized when the lubricant thickness was ~0.6 nm for the measured parameter values of the HDI. This suggests that the current lubricant thickness of 1.0–1.2 nm can be reduced to 0.6 nm, accompanied by a slight decrease in the adhesion force and a slight increase in the resistance against any variation in its thickness. This tribo-surface-modification concept can be applied to surface-modification coatings in other fields such as micro/nano-electromechanical systems. The compatibility of the theoretical surface energy function with experimental data indicates the validity and consistency of this theory.

Content from these authors
© 2018 by Japanese Society of Tribologists

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Next article
feedback
Top