Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 12, 2009

Functional a posteriori error estimates for incremental models in elasto-plasticity

  • Sergey Repin EMAIL logo and Jan Valdman
From the journal Open Mathematics

Abstract

We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants and are valid for any conforming approximations regardless of the method used for their derivation. It is shown that the structure of error majorant reflects properties of the exact solution so that the majorant vanishes only if an approximate solution coincides with the exact one. Moreover, it possesses necessary continuity properties, so that any sequence of approximations converging to the exact solution in the energy space generates a sequence of positive numbers (explicitly computable by the majorant functional) that tends to zero.

MSC: 65N30; 74C05

[1] Ainsworth M., Oden J.T., A posteriori error estimation in finite element analysis, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, Wiley and Sons, New York, 2000 10.1002/9781118032824Search in Google Scholar

[2] Alberty J., Carstensen C., Numerical analysis of time-depending primal elastoplasticity with hardening, SIAM J. Numer. Anal., 2000, 37, 1271–1294 http://dx.doi.org/10.1137/S003614299834130110.1137/S0036142998341301Search in Google Scholar

[3] Alberty J., Carstensen C., Zarrabi D., Adaptive numerical analysis in primal elastoplasticity with hardening, Comput. Methods Appl. Mech. Engrg., 1999, 171, 175–204 http://dx.doi.org/10.1016/S0045-7825(98)00210-210.1016/S0045-7825(98)00210-2Search in Google Scholar

[4] Babuška I., Strouboulis T., The finite element method and its reliability, Oxford University Press, New York, 2001 Search in Google Scholar

[5] Bangerth W., Rannacher R., Adaptive finite element methods for differential equations, Birkhäuser, Berlin, 2003 10.1007/978-3-0348-7605-6Search in Google Scholar

[6] Bensoussan A., Frehse J., Asymptotic behaviour of Norton-Hoff’s law in plasticity theory and H1 regularity, In: Lions J.L. (Ed.) et al., Boundary value problems for partial differential equations and applications, Dedicated to Enrico Magenes on the occasion of his 70th birthday, Paris: Masson. Res. Notes Appl. Math., 1993, 29, 3–25 Search in Google Scholar

[7] Bildhauer M., Fuchs M., Repin S., A posteriori error estimates for stationary slow flows of power-law fluids, Journal of Non-Newtonian Fluid Mechanics, 2007, 142, 112–122 http://dx.doi.org/10.1016/j.jnnfm.2006.06.00110.1016/j.jnnfm.2006.06.001Search in Google Scholar

[8] Bildhauer M., Fuchs M., Repin S., A functional type a posteriori error analysis for Ramberg-Osgood Model, ZAMM Z. Angew. Math. Mech., 2007, 87(11–12), 860–876 http://dx.doi.org/10.1002/zamm.20071035010.1002/zamm.200710350Search in Google Scholar

[9] Blaheta R., Numerical methods in elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 1997, 147, 167–185 http://dx.doi.org/10.1016/S0045-7825(97)00012-110.1016/S0045-7825(97)00012-1Search in Google Scholar

[10] Brokate M., Carstensen C., Valdman J., A quasi-static boundary value problem in multi-surface elastoplasticity, I, Analysis, Math. Methods Appl. Sci., 2004, 27, 1697–1710 http://dx.doi.org/10.1002/mma.52410.1002/mma.524Search in Google Scholar

[11] Brokate M., Carstensen C., Valdman J., A quasi-static boundary value problem in multi-surface elastoplasticity, II, Numerical solution, Math. Methods Appl. Sci., 2005, 28, 881–901 http://dx.doi.org/10.1002/mma.59310.1002/mma.593Search in Google Scholar

[12] Brokate M., Sprekels J., Hysteresis and phase transitions, Springer, New York, 1996 10.1007/978-1-4612-4048-8Search in Google Scholar

[13] Carstensen C., Numerical analysis of the primal problem of elastoplasticity with hardening, Numer. Math., 1999, 82(4), 577–597 http://dx.doi.org/10.1007/s00211005043110.1007/s002110050431Search in Google Scholar

[14] Carstensen C., Orlando A., Valdman J., A convergent adaptive finite element method for the primal problem of elastoplasticity, Internat. J. Numer. Methods Engrg., 2006, 67(13), 1851–1887 http://dx.doi.org/10.1002/nme.168610.1002/nme.1686Search in Google Scholar

[15] Ekeland I., Teman R., Convex analysis and variational problems, North-Holland, Oxford, 1976 Search in Google Scholar

[16] Fuchs M., Repin S., Estimates for the deviation from the exact solutions of variational problems modeling certain classes of generalized Newtonian fluids, Math. Methods Appl. Sci., 2006, 29, 2225–2244 http://dx.doi.org/10.1002/mma.77310.1002/mma.773Search in Google Scholar

[17] Glowinski R., Lions J.L., Tremolieres R., Analyse numerique des inequations variationnelles, Dunod, Paris, 1976 (in French) Search in Google Scholar

[18] Gruber P., Valdman J., Implementation of an elastoplastic solver based on the Moreau, Yosida theorem, Math. Comput. Simulation, 2007, 76(1–3), 73–81 http://dx.doi.org/10.1016/j.matcom.2007.01.03610.1016/j.matcom.2007.01.036Search in Google Scholar

[19] Gruber P., Valdman J., Solution of one-time-step problems in elastoplasticity by a slant Newton method, SIAM J. Sci. Comput., 2009, 31(2), 1558–1580 http://dx.doi.org/10.1137/07069007910.1137/070690079Search in Google Scholar

[20] Han W., Reddy B.D., Computational plasticity: the variational basis and numerical analysis, Comput. Methods Appl. Mech. Engrg., 1995, 283–400 Search in Google Scholar

[21] Hofinger A., Valdman J., Numerical solution of the two-yield elastoplastic minimization problem, Computing, 2007, 81, 35–52 http://dx.doi.org/10.1007/s00607-007-0242-210.1007/s00607-007-0242-2Search in Google Scholar

[22] Krejčí P., Hysteresis, convexity and dissipation in hyperbolic equations, GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 8, Gakkotosho, Tokyo, 1996 Search in Google Scholar

[23] Lions J.L., Stampacchia G., Variational inequalities, Comm. Pure Appl. Math., 1967, XX(3), 493–519 http://dx.doi.org/10.1002/cpa.316020030210.1002/cpa.3160200302Search in Google Scholar

[24] Neittaanmäki P., Repin S., Reliable methods for computer simulation, Error control and a posteriori estimates, Elsevier, New York, 2004 Search in Google Scholar

[25] Rannacher R., Suttmeier F.T., A posteriori error estimation and mesh adaptation for finite element models in elastoplasticity, Comput. Methods Appl. Mech. Engrg., 1999, 176, 333–361 http://dx.doi.org/10.1016/S0045-7825(98)00344-210.1016/S0045-7825(98)00344-2Search in Google Scholar

[26] Repin S., A priori error estimates of variational-difference methods for Hencky plasticity problems, Zap. Nauchn. Semin. POMI, 1995, 221, 226–234 (in Russian), English translation: J. Math. Sci., New York, 1997, 87(2), 3421-3427 10.1007/BF02355592Search in Google Scholar

[27] Repin S.I., Errors of finite element methods for perfectly elasto-plastic problems, Math. Models Meth. Appl. Sci., 1996, 6(5), 587–604 http://dx.doi.org/10.1142/S021820259600023710.1142/S0218202596000237Search in Google Scholar

[28] Repin S., A posteriori estimates for approximate solutions of variational problems with strongly convex functionals, Problems of Mathematical Analysis, 1997, 17, 199–226 (in Russian), English translation: J. Math. Sci., 1999, 97(4), 4311–4328 10.1007/BF02365047Search in Google Scholar

[29] Repin S., A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp., 2000, 69(230), 481–500 http://dx.doi.org/10.1090/S0025-5718-99-01190-410.1090/S0025-5718-99-01190-4Search in Google Scholar

[30] Repin S., A posteriori estimates for partial differential equations, Walter de Gruyter Verlag, Berlin, 2008 http://dx.doi.org/10.1515/978311020304210.1515/9783110203042Search in Google Scholar

[31] Repin S.I., Seregin G.A., Error estimates for stresses in the finite element analysis of the two-dimensional elastoplastic problems, Internat. J. Engrg. Sci., 1995, 33(2), 255–268 http://dx.doi.org/10.1016/0020-7225(94)00057-Q10.1016/0020-7225(94)00057-QSearch in Google Scholar

[32] Repin S., Valdman J., Functional a posteriori error estimates for problems with nonlinear boundary conditions, J. Numer. Math., 2008, 16(1), 51–81 http://dx.doi.org/10.1515/JNUM.2008.00310.1515/JNUM.2008.003Search in Google Scholar

[33] Repin S.I., Xanthis L.S., A posteriori error estimation for elasto-plastic problems based on duality theory, Comput. Methods Appl. Mech. Engrg., 1996, 138, 317–339 http://dx.doi.org/10.1016/S0045-7825(96)01136-X10.1016/S0045-7825(96)01136-XSearch in Google Scholar

[34] Seregin G., On the regularity of weak solutions of variational problems of plasticity theory, Algebra i Analiz, 1990, 2(2), 121–140 (in Russian), English translation: Leningrad Mathematical Journal, 1991, 2(2), 321-338 Search in Google Scholar

[35] Simo J.C., Hughes T.J.R., Computational inelasticity, Springer-Verlag New York, 1998 Search in Google Scholar

[36] Valdman J., Minimization of functional majorant in a posteriori error analysis based on H(div) multigrid-preconditioned CG method, Advances in Numerical Analysis, to appear Search in Google Scholar

[37] Wieners Ch., Nonlinear solution methods for infinitesimal perfect plasticity, ZAMM Z. Angew. Math. Mech., 2007, 87(8–9), 643–660 http://dx.doi.org/10.1002/zamm.20061033910.1002/zamm.200610339Search in Google Scholar

Published Online: 2009-8-12
Published in Print: 2009-9-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-009-0035-2/html
Scroll to top button