Skip to main content
Log in

Effects of a fully submerged boulder within a boulder array on the mean and turbulent flow fields: Implications to bedload transport

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The objective of this coupled experimental and numerical study is to provide insight into the mean and turbulent flow fields within an array of fully submerged, isolated, immobile boulders. Our study showed that the velocity defect law performed well for describing the mean flow around the boulder within the array. A prerequisite, however, was to accurately estimate the spatial variability of u* around the boulder, which was achieved via the boundary characteristics method. The u* exhibited considerable spatial variability within the array and form roughness was shown to be up to 2 times larger than the skin roughness in the boulder near-wake region. Because the boulders bear a significant amount of the flow shear, the available bed shear stress for entrainment of the mobile sediment, τ ols , near the boulders was roughly 50% lower than the ambient τ ols . The τ ols variability induced by the boulders could lead to a threefold overestimation of the sediment transport rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzalimehr, H., and F. Anctil (2000), Accelerating shear velocity in gravel-bed channels, Hydrolog. Sci. J. 45,1, 113–124, DOI: 10.1080/0262666000 9492309.

    Article  Google Scholar 

  • Balachandar, R., K. Hagel, and D. Blakely (2002), Velocity distribution in decelerating flow over rough surfaces, Can. J. Civ. Eng. 29,2, 211–221, DOI: 10.1139/l01-089.

    Article  Google Scholar 

  • Bathurst, J.C. (1987), Critical conditions for bed material movement in steep, boulder-bed streams. In: R.L. Beshta, T. Blinn, G.E. Grant, F.J. Swanson, and G.G. Ice (eds.), Proc. Corvallis Symp. “Erosion and Sedimentation in the Pacific Rim”, IAHS Publ. No. 165, Wallingford, UK, 309–318.

  • Bettess, R. (1984), Initiation of sediment transport in gravel streams. In: Proc. Inst. Civil Eng., Part 2, 77, 79–88.

    Article  Google Scholar 

  • Biron, P.M., C. Robson, M.F. Lapointe, and S.J. Gaskin (2004), Comparing different methods of bed shear stress estimates in simple and complex flow fields, Earth Surf. Process. Land. 29,11, 1403–1415, DOI: 10.1002/ esp.1111.

    Article  Google Scholar 

  • Bomminayuni, S.K. (2010), Large eddy simulation of turbulent flow over a rough bed using the immersed boundary method, M.Sc. Thesis, Georgia Institute of Technology, Atlanta, Georgia.

    Google Scholar 

  • Byrd, T.C., D.J. Furbish, and J. Warburton (2000), Estimating depth-averaged velocities in rough channels, Earth Surf. Process. Land. 25,2, 167–173, DOI: 10.1002/(SICI)1096-9837(200002)25:2<167::AID-ESP66>3.0.CO;2-G.

    Article  Google Scholar 

  • Cao, Z. (1997), Turbulent bursting-based sediment entrainment function, J. Hydraul. Eng. 123,3, 233–236, DOI: 10.1061/(ASCE)0733-9429(1997)123:3(233).

    Article  Google Scholar 

  • Cardoso, A.H., W.H. Graf, and G. Gust (1989), Uniform flow in smooth open channel, J. Hydraul. Res. 27, 603–616, DOI: 10.1080/00221688909499113.

    Article  Google Scholar 

  • Clauser, F.H. (1956), The turbulent boundary layer, Adv. Appl. Mech. 4, 1–51, DOI: 10.1016/S0065-2156(08)70370-3.

    Article  Google Scholar 

  • Coleman, N.L. (1967), A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypothetical streambed. In: Proc. 12th Congress Int. Assoc. Hydraul. Res. (IAHR), 11–14 September 1967, Colorado State University, Fort Collins, CO, paper C22, 185–192.

    Google Scholar 

  • Coles, D. (1956), The law of the wake in the turbulent boundary layer, J. Fluid Mech. 1,2, 191–226, DOI: 10.1017/S0022112056000135.

    Article  Google Scholar 

  • Dey, S., and R.V. Raikar (2007), Characteristics of loose rough boundary streams at near-threshold, J. Hydraul. Eng. ASCE 133,3, 288–304, DOI: 10.1061/ (ASCE)0733-9429(2007)133:3(288).

    Article  Google Scholar 

  • Dey, S., S. Sarkar, S.K. Bose, S. Tait, and O. Castro-Orgaz (2011), Wall-wake flows downstream of a sphere placed on a plane rough-wall, J. Hydraul. Eng. ASCE 137,10, 1173–1189, DOI: 10.1061/(ASCE)HY.1943-7900.0000441.

    Article  Google Scholar 

  • Fernandez-Luque, R., and R. Van Beek (1976), Erosion and transport of bed-load sediment, J. Hydraul. Res. 14,2, 127–144, DOI: 10.1080/002216876 09499677.

    Article  Google Scholar 

  • Ferro, V. (2003), ADV measurements of velocity distributions in a gravel-bed flume, Earth Surf. Process. Land. 28,7, 707–722, DOI: 10.1002/esp.467.

    Article  Google Scholar 

  • Ferro, V., and G. Baiamonte (1994), Flow velocity profiles in gravel-bed rivers, J. Hydraul. Eng. 120,1, 60–80, DOI: 10.1061/(ASCE)0733-9429(1994) 120:1(60).

    Article  Google Scholar 

  • Fox, J.F., A.N. Papanicolaou, and L. Kjos (2005), Eddy taxonomy methodology around a submerged barb obstacle within a fixed rough bed, J. Eng. Mech. 131,10, 1082–1094, DOI: 10.1061/(ASCE)0733-9399(2005)131:10(1082).

    Article  Google Scholar 

  • Frederich, O., E. Wassen, and F. Thiele (2008), Prediction of the flow around a short wall-mounted finite cylinder using LES and DES, J. Numer. Anal. Ind. Appl. Math. 3,3–4, 231–247.

    Google Scholar 

  • Fröhlich, J., and W. Rodi (2004), LES of the flow around a circular cylinder of finite height, Int. J. Heat Fluid Flow 25,3, 537–548, DOI: 10.1016/ j.ijheatfluidflow.2004.02.006.

    Article  Google Scholar 

  • Goring, D.G., and V.I. Nikora (2002), Despiking acoustic Doppler velocimeter data, J. Hydraul. Eng. ASCE 128,1, 117–126, DOI: 10.1061/(ASCE)0733-9429(2002)128:1(117).

    Article  Google Scholar 

  • Hinze, J.O. (1975), Turbulence, McGraw-Hill, New York.

    Google Scholar 

  • Hofland, B. (2005), Rock and roll: Turbulence-induced damage to granular bed protections, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  • Kironoto, B.A., and W.H. Graf (1994), Turbulence characteristics in rough uniform open-channel flow. In: Proc. Inst. Civ. Eng., Water Maritime and Energy, 106,4, 333–344.

    Article  Google Scholar 

  • Krajnović, S. (2008), Flow around a surface-mounted finite cylinder: A challenging case for LES, Notes Num. Fluid Mech. Mul. D. 97, 305–315, DOI: 10.1007/ 978-3-540-77815-8_32.

    Article  Google Scholar 

  • Kramer, C.M. (2005), The role of relative submergence on cluster microtopography and bedload predictions in mountain streams, M.Sc. Thesis, The University of Iowa, Iowa City, Iowa.

    Google Scholar 

  • Lacey, R.W.J., and A.G. Roy (2008), Fine-scale characterization of the turbulent shear layer of an instream pebble cluster, J. Hydraul. Eng. ASCE 134,7, 925–936, DOI: 10.1061/(ASCE)0733-9429(2008)134:7(925).

    Article  Google Scholar 

  • Lawless, M., and A. Robert (2001), Scales of boundary resistance in coarse-grained channels: turbulent velocity profiles and implications, Geomorphology 39,3–4, 221–238, DOI: 10.1016/S0169-555X(01)00029-0.

    Article  Google Scholar 

  • Lee, T., C.-L. Lin, and C.A. Friehe (2007), Large-eddy simulation of air flow around a wall-mounted cylinder and a tripod tower, J. Turbul. 8,N29, 1–28, DOI: 10.1080/14685240701383122.

    Google Scholar 

  • Martin, V., T.S.R. Fischer, R.G. Millar, and M.C. Quick (2002), ADV data analysis for turbulent flows: Low correlation problem. In: T.L. Wahl (ed.), Proc. Conf. Hydraulic Measurements and Experimental Methods, 28 July–1 August 2002 Estes Park, CO, USA, American Society of Civil Engineers, Reston, USA, DOI: 10.1061/40655(2002)101.

    Google Scholar 

  • Morris, H.M. (1955), Flow in rough conditions, Trans. ASCE 120, 373–398.

    Google Scholar 

  • Nezu, I., and H. Nakagawa (1993), Turbulence in Open-Channel Flows, Balkema, Rotterdam.

    Google Scholar 

  • Ničeno, B., A.D.T. Dronkers, and K. Hanjalić (2002), Turbulent heat transfer from a multi-layered wall-mounted cube matrix: a large-eddy simulation, Int. J. Heat Fluid Flow 23,2, 173–185, DOI: 10.1016/S0142-727X(01)00147-3.

    Article  Google Scholar 

  • Nikora, V.I., and D.G. Goring (1998), ADV measurements of turbulence: Can we improve their interpretation?, J. Hydraul. Eng. ASCE 124,6, 630–634, DOI: 10.1061/(ASCE)0733-9429(1998)124:6(630).

    Article  Google Scholar 

  • Nikora, V.I., I. McEwan, S. McLean, S. Coleman, D. Pokrajac, and R. Walters (2007), Double-averaging concept for rough-bed open-channel and overland flows: Theoretical background, J. Hydraul. Eng. ASCE 133,8, 873–883, DOI: 10.1061/(ASCE)0733-9429(2007)133:8(873).

    Article  Google Scholar 

  • Oengören, A., and S. Ziada (1998), An in-depth study of vortex shedding, acoustic resonance and turbulent forces in normal triangle tube arrays, J. Fluid. Struct. 12,6, 717–758, DOI: 10.1006/jfls.1998.0162.

    Article  Google Scholar 

  • Paik, J., F. Sotiropoulos, and F. Porté-Agel (2009), Detached eddy simulation of flow around two wall-mounted cubes in tandem, Int. J. Heat Fluid Flow 30,2, 286–305, DOI: 10.1016/j.ijheatfluidflow.2009.01.006.

    Article  Google Scholar 

  • Palau-Salvador, G., T. Stoesser, and W. Rodi (2008), LES of the flow around two cylinders in tandem, J Fluids Struct. 24,8, 1304–1312, DOI: 10.1016/ j.jfluidstructs.2008.07.002.

    Article  Google Scholar 

  • Palau-Salvador, G., T. Stoesser, J. Fröhlich, M. Kappler, and W. Rodi (2010), Large eddy simulations and experiments of flow around finite-height cylinders, Flow Turbul. Combust. 84,2, 239–275, DOI: 10.1007/s10494-009-9232-0.

    Article  Google Scholar 

  • Papanicolaou, A.N., and C.M. Kramer (2005), The role of relative submergence on cluster microtopography and bedload predictions on mountain streams. In: G. Parker and M.H. Garcia (eds.), Proc. Int. Symp “River, Coastal and Estuarine Morphodynamics”, 4–7 October 2005, Urbana, USA, Taylor and Francis, Philadephia.

    Google Scholar 

  • Papanicolaou, A.N., and A. Schuyler (2003), Cluster evolution and flow-frictional characteristics under different sediment availabilities and specific gravity, J. Eng. Mech. ASCE 129,10, 1206–1219, DOI: 10.1061/(ASCE)0733-9399(2003)129:10(1206).

    Article  Google Scholar 

  • Papanicolaou, A.N., P. Diplas, N. Evangelopoulos, and S. Fotopoulos (2002), Stochastic incipient motion criterion for spheres under various bed packing conditions, J. Hydraul. Eng. ASCE 128,4, 369–380, DOI: 10.1061/(ASCE) 0733-9429(2002)128:4(369).

    Article  Google Scholar 

  • Papanicolaou, A.N., A. Bdour, and E. Wicklein (2004), One-dimensional hydrodynamic/ sediment transport model applicable to steep mountain streams, J. Hydraul. Res. 42,4, 357–375, DOI: 10.1080/00221686.2004. 9641204.

    Google Scholar 

  • Papanicolaou, A.N., D.C. Dermisis, and M. Elhakeem (2011), Investigating the role of clasts on the movement of sand in gravel bed rivers, J. Hydraul. Eng. ASCE 137,9, DOI: 10.1061/(ASCE)HY.1943-7900.0000381.

  • Parker, G. (2008), Transport of gravel and sediment mixtures, In: M.H. García (ed.), Sedimentation Engineering: Processes, Measurements, Modeling, and Practice, ASCE Manuals and Reports on Engineering Practice No. 110, American Society of Civil Engineers, Reston, USA.

    Google Scholar 

  • Pattenden, R.J., N.W. Bressloff, S.R. Turnock, and X. Zhang (2007), Unsteady simulations of the flow around a short surface-mounted cylinder, Int. J. Numer. Methods Fluids 53,6, 895–914, DOI: 10.1002/fld.1309.

    Article  Google Scholar 

  • Pitlick, J., E.R. Mueller, C. Segura, R. Cress, and M. Torizzo (2008), Relation between flow, surface-layer armoring and sediment transport in gravel-bed rivers, Earth Surf. Process. Land. 33,8, 1192–1209, DOI: 10.1002/esp. 1607.

    Article  Google Scholar 

  • Raffel, M., C. Willert, S. Wereley, and J. Kompenhans (2007), Particle Image Velocimetry: A Practical Guide, 2nd ed., Springer, Berlin.

    Google Scholar 

  • Raupach, M.R. (1992), Drag and drag partition on rough surfaces, Bound-Lay. Meteorol. 60,4, 375–395, DOI: 10.1007/BF00155203.

    Article  Google Scholar 

  • Rickenmann, D. (2001), Comparison of bed load transport in torrents and gravel bed streams, Water Resour. Res. 37,12, 3295–3305, DOI: 10.1029/2001WR 000319.

    Article  Google Scholar 

  • Rodi, W., J.H. Ferziger, M. Breuer, and M. Pourquiée (1997), Status of large eddy simulation: Results of a workshop, J. Fluid. Eng. 119,2, 248–262, DOI: 10.1115/1.2819128.

    Article  Google Scholar 

  • Rowiński, P.M., J. Aberle, and A. Mazurczyk (2005), Shear velocity estimation in hydraulic research, Acta Geophys. Pol. 53,4, 567–583.

    Google Scholar 

  • Roy, A.G., T. Buffin-Bélanger, H. Lamarre, and A.D. Kirkbride (2004), Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river, J. Fluid Mech. 500, 1–27, DOI: 10.1017/S0022112003006396.

    Article  Google Scholar 

  • Sadeque, M.A.F., N. Rajaratnam, and M.R. Loewen (2009), Effects of bed roughness on flow around bed-mounted cylinders in open channels, J. Hydraul. Eng. ASCE 135,2, 100–110, DOI: 10.1061/(ASCE)0733-9399(2009) 135:2(100).

    Google Scholar 

  • Schlichting, H. (1979), Boundary-Layer Theory, 7th ed., McGraw-Hill, New York.

    Google Scholar 

  • Schmidt, S., and F. Thiele (2002), Comparison of numerical methods applied to the flow over wall-mounted cubes, Int. J. Heat Fluid Flow 23,3, 330–339, DOI: 10.1016/S0142-727X(02)00180-7.

    Article  Google Scholar 

  • Shamloo, H., N. Rajaratnam, and C. Katopodis (2001), Hydraulics of simple habitat structures, J. Hydraul. Res. 39,4, 351–366, DOI: 10.1080/00221680 109499840.

    Article  Google Scholar 

  • SonTek (2001), ADV Operation Manual, SonTek Inc., San Diego.

    Google Scholar 

  • Stoesser, T., and V.I. Nikora (2008), Flow structure over square bars at intermediate submergence: Large Eddy Simulation study of bar spacing effect, Acta Geophys. 56,3, 876–893, DOI: 10.2478/s11600-008-0030-1.

    Article  Google Scholar 

  • Stoesser, T., G. Palau-Salvador, W. Rodi, and P. Diplas (2009), Large Eddy Simulation of turbulent flow through submerged vegetation, Transp. Porous Med. 78,3, 347–365, DOI: 10.1007/s11242-009-9371-8.

    Article  Google Scholar 

  • Strom, K.B., and A.N. Papanicolaou (2007), ADV measurements around a cluster microform in a shallow mountain stream, J. Hydraul. Eng. ASCE 133,12, 1379–1389, DOI: 10.1061/(ASCE)0733-9429(2007)133:12(1379).

    Article  Google Scholar 

  • Strom, K.B., A.N. Papanicolaou, N. Evangelopoulos, and M. Odeh (2004), Microforms in gravel bed rivers: Formation, disintegration, and effects on bedload transport, J. Hydraul. Eng. ASCE 130,6, 554–567, DOI: 10.1061/ (ASCE)0733-9429(2004)130:6(554).

    Article  Google Scholar 

  • Strom, K.B., A.N. Papanicolaou, and G. Constantinescu (2007), Flow heterogeneity over 3D cluster microform: Laboratory and numerical investigation, J. Hydraul. Eng. ASCE 133,3, 273–287, DOI: 10.1061/(ASCE)0733-9429 (2007)133:3(273).

    Article  Google Scholar 

  • Vanoni, V.A., and N.H. Brooks (1957), Laboratory studies of the roughness and suspended load of alluvial streams, Sedimentation Laboratory Rep. No. E68, California Institute of Technology, Pasadena.

    Google Scholar 

  • Wahl, T.L. (2003), Discussion of “Despiking acoustic doppler velocimeter data” by Derek G. Goring and Vladimir I. Nikora, J. Hydraul. Eng. ASCE 129,6, 484–487, DOI: 10.1061/(ASCE)0733-9429(2003)129:6(484).

    Article  Google Scholar 

  • Wei, T., R. Schmidt, and P. McMurtry (2005), Comment on the Clauser chart method for determining the friction velocity, Exp. Fluids 38,5, 695–699, DOI: 10.1007/s00348-005-0934-3.

    Article  Google Scholar 

  • White, F.M. (1991), Viscous Fluid Flow, 2nd ed., McGraw-Hill Inc., New York.

    Google Scholar 

  • Yager, E.M., J.W. Kirchner, and W.E. Dietrich (2007), Calculating bed load transport in steep boulder bed channels, Water Resour. Res. 43, W07418, DOI: 10.1029/2006WR005432.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios N. Papanicolaou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papanicolaou, A.N., Kramer, C.M., Tsakiris, A.G. et al. Effects of a fully submerged boulder within a boulder array on the mean and turbulent flow fields: Implications to bedload transport. Acta Geophys. 60, 1502–1546 (2012). https://doi.org/10.2478/s11600-012-0044-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-012-0044-6

Key words

Navigation