Skip to main content
Log in

Influence of cultivation conditions on production of lignocellulolytic enzymes by Ceriporiopsis subvermispora

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The aim of this work was to make a survey describing factors that influence the production of extracellular enzymes by white-rot fungus Ceriporiopsis subvermispora responsible for the degradation of lignocellulolytic materials. These factors were: carbon sources (glucose, cellulose, hemicellulose, lignin, maltose and starch), nitrogen sources (ammonium sulphate, potassium nitrate, urea, albumin and peptone), pH, temperature and addition of three different concentrations of Cu2+ and Mn2+. The cellulase and xylanase activities were similar in medium with different carbon sources and the highest cellulase and xylanase activities were measured in medium with urea and potassium nitrate as nitrogen sources, respectively. The highest laccase activity was observed in medium with lignin and peptone as carbon and nitrogen sources. In other experiments, time course of production of lignocellulolytic enzymes by white-rot fungus C. subvermispora in medium with lignin or glucose as carbon sources was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey M.J., Biely P. & Poutanem K. 1992. Inter-laboratory testing of methods for assay of xylanases activity. J. Biotechnol. 23: 257–270.

    Article  CAS  Google Scholar 

  • Barr D.P. & Aust S.D. 1994. Pollutant degradation by white-rot fungi. Rev. Environ. Contam. Toxicol. 138: 49–72.

    PubMed  CAS  Google Scholar 

  • Beg Q.K., Kapoor M., Mahajan L. & Hoondal G.S. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56: 326–338.

    Article  PubMed  CAS  Google Scholar 

  • Blanchette R.A., Burnes T.A., Eerdmans M.M. & Akhtar M. 1992. Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung — Int. J. Biol. Chem. Phys. Technol. Wood 46: 109–115.

    CAS  Google Scholar 

  • Cohen R., Hadar Y. & Yarder O. 2001. Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ. Microbiol. 3: 312–322.

    Article  PubMed  CAS  Google Scholar 

  • Collins P.J., Field J.A., Teunissen P. & Dobson A.D. 1997. Stabilization of lignin peroxidases in white rot fungi by tryptophan. Appl. Environ. Microbiol. 63: 2543–2548.

    PubMed  CAS  Google Scholar 

  • de Souza-Cruz P.B., Freer J., Siika-Aho M. & Ferraz A. 2004. Extraction and determination of enzymes produced by Ceriporiopsis subvermispora during biopulping of Pinus taeda wood chips. Enzyme Microb. Technol. 34: 228–234.

    Article  Google Scholar 

  • Evans C.S. & Palmer J.M. 1983. Ligninolytic activity of Coriolus versicolor. J. Gen. Microbiol. 129: 2103–2108.

    CAS  Google Scholar 

  • Fan L.T., Gharpuray M.M. & Lee Y.H. 1987. Cellulose Hydrolysis (Biotechnology Monographs). Springer, Berlin, 198 pp.

    Google Scholar 

  • Gao J., Weng H., Daheng Z., Yuan M., Guan F. & Xi Y. 2008. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Biores. Technol. 99: 7623–7629.

    Article  CAS  Google Scholar 

  • Hammel K.E. & Cullen D. 2008. Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11: 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Heidorne F.O., Malgalhaes P.O., Ferraz A.L. & Milagres A.M.F. 2006. Characterization of hemicellulases and cellulases produced by Ceriporiopsis subvermispora grown on wood under biopulping conditions. Enzyme Microb. Technol. 38: 436–442.

    Article  CAS  Google Scholar 

  • Howard R.L., Abotsi E., Jansen van Rensburg E.L. & Howard S. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2: 602–619.

    CAS  Google Scholar 

  • Kirk T.K. & Cullen D. 1998. Enzymology and molecular genetics of wood degradation by white-rot fungi, pp. 273–308. In. Young R.A. & Akhtar M. (eds), Environmentally Friendly Technologies for the Pulp and Paper Industry, University of Wisconsin, Wisconsin, USA.

    Google Scholar 

  • Levin L., Herrmann C. & Papinutti V.L. 2008. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem. Eng. J. 39: 207–214.

    Article  CAS  Google Scholar 

  • Lowry O., Rosenbrough N., Farr A. & Randall R. 1951. Protein measurement with the Folin reagent. J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicylic reagent for the determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  • Olsson L., Christensen T.M.I.E., Hansen K.P. & Palmqvist E.A. 2003. Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30. Enzyme Microb. Technol. 33: 612–619.

    Article  CAS  Google Scholar 

  • Rajakumar S., Gaskell J., Cullen D., Lobos S. & Vicuna R. 1996. Lip-like genes in Phanerochaete sordida and Ceriporiopsis subvermispora, white-rot fungi from which lignin peroxide has not been detected. Appl. Environ. Microbiol. 62: 2660–2663.

    PubMed  CAS  Google Scholar 

  • Saravanakumar K., Saranya R., Sankaranarayana A. & Kaviyarasan V. 2010. Statistical designs and response surface technique for the optimization of extra cellular laccase enzyme production by using Pleurotus sp. Recent Res. Sci. Technol. 2: 104–111.

    CAS  Google Scholar 

  • Sánchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185–194.

    Article  PubMed  Google Scholar 

  • Sethuraman A., Akin D.E. & Eriksson K.E.L. 1998. Plant-cellwall-degrading enzymes produced by the white-rot fungus Ceriporiopsis subvermispora. Biotechnol. Appl. Biochem. 27: 37–47.

    CAS  Google Scholar 

  • Tanaka H., Koike K., Itakura S. & Enoki A. 2009. Degradation of wood and enzyme production by Ceriporiopsis subvermispora. Enzyme Microb. Technol. 45: 384–390.

    Article  CAS  Google Scholar 

  • Vincentim M.P. & Ferraz A. 2007. Enzyme production and chemical alterations of Eucalyptus grandis wood during biodegradation by Ceriporiopsis subvermispora in cultures supplemented with Mn2+, corn steep liquor and glucose. Enzyme Microb. Technol. 40: 645–652.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Ondrejovič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chmelová, D., Ondrejovič, M., Ondáš, V. et al. Influence of cultivation conditions on production of lignocellulolytic enzymes by Ceriporiopsis subvermispora . Biologia 66, 748–754 (2011). https://doi.org/10.2478/s11756-011-0103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0103-5

Key words

Navigation