Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 7, 2011

Investigation of temperature characteristics of modern InAsP/InGaAsP multi-quantum-well TJ-VCSELs for optical fibre communication

  • Ł. Piskorski EMAIL logo , R. Sarzała and W. Nakwaski
From the journal Opto-Electronics Review

Abstract

Continuous-wave (CW) performance of modern 1.3-μm InAsP/InGaAsP multi-quantum-well (MQW) tunnel-junction vertical-cavity surface-emitting diode lasers (TJ-VCSELs) is investigated using our comprehensive self-consistent simulation model to suggest their optimal design for room and elevated temperatures. For increasing ambient temperatures, an increase in the VCSEL threshold current has happened to be mostly associated with the Auger recombination. Nevertheless, the InAsP/InGaAsP VCSELs have been found to exhibit encouraging thermal behaviour with the quite high value of maximal operating temperature of 350 K. It has been found that 5-μm devices seem to be the most optimal ones because they demonstrate both the room temperature (RT) threshold current equal to only 0.55 mA and maximum operating temperature equal to as much as 345 K. For these devices, the characteristic temperature T0 is equal to 92 K for 290–305 K, 51 K for 310–325 K and 29 K for 330–345 K. Therefore, the InAsP/InGaAsP VCSELs have been found to offer very promising performance both at room and elevated temperatures as sources of the carrier 1.3-μm wave in the fibre optical communication using silica fibres.

[1] S. Uchiyama, N. Yokouchi, and T. Ninomiya, “Continuous-wave operation up to 36°C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers”, IEEE Photonic. Tech. L. 9, 141–142 (1997). http://dx.doi.org/10.1109/68.55306510.1109/68.553065Search in Google Scholar

[2] J. Cheng, C.L. Shieh, X. Huang, G. Liu, M.V.R. Murty, C.C. Lin, and D.X. Xu, “Efficient CW lasing and high-speed modulation of 1.3-μm AlGaInAs VCSELs with good high temperature lasing performance”, IEEE Photonic. Tech. L. 17, 7–9 (2005). http://dx.doi.org/10.1109/LPT.2004.83747410.1109/LPT.2004.837474Search in Google Scholar

[3] N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M.H. Hu, X.S. Liu, M.J. Li, R. Bhat, and C.E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs-InP DBR grown by MOCVD”, IEEE J. Sel. Top. Quant. 11, 990–998 (2005). http://dx.doi.org/10.1109/JSTQE.2005.85384110.1109/JSTQE.2005.853841Search in Google Scholar

[4] V.M. Ustinov, A.E. Zhukov, N.A. Maleev, A.R. Kovsh, S.S. Mikhrin, B.V. Volovik, Yu.G. Musikhin, Yu.M. Shernyakov, M.V. Maximov, A.F. Tsatsul’nikov, N.N. Ledentsov, Zh.I. Alferov, J.A. Lott, and D. Bimberg, “1.3-μm InAs/GaAs quantum dot lasers and VCSELs grown bymolecular beam epitaxy”, J. Cryst. Growth 227/228, 1155–1161 (2001). http://dx.doi.org/10.1016/S0022-0248(01)01006-510.1016/S0022-0248(01)01006-5Search in Google Scholar

[5] D.L. Huffaker, G. Park, Z. Zou, O.B. Shchekin, and D.G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser”, Appl. Phys. Lett. 73, 2564–2566 (1998). http://dx.doi.org/10.1063/1.12253410.1063/1.122534Search in Google Scholar

[6] J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Zh.I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 μm”, Electron. Lett. 36, 1384–1385 (2000). http://dx.doi.org/10.1049/el:2000098810.1049/el:20000988Search in Google Scholar

[7] A. Ramakrishnan, G. Steinle, D. Supper, W. Stolz, and G. Ebbinghaus, “Nitrogen incorporation in (GaIn)(NAs) for 1.3-μm VCSEL grown with MOVPE”, J. Cryst. Growth 248, 457–462 (2003). http://dx.doi.org/10.1016/S0022-0248(02)01859-610.1016/S0022-0248(02)01859-6Search in Google Scholar

[8] K.D. Choquette, J.F. Klem, A.J. Fischer, O. Blum, A.A. Allerman, I.J. Fritz, S.R. Kurtz, W.G. Breiland, R. Sieg, K.M. Geib, J.W. Scott, and R.L. Naone, “Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 μm”, Electron. Lett. 36, 1388–1390 (2000). http://dx.doi.org/10.1049/el:2000092810.1049/el:20000928Search in Google Scholar

[9] M. Yamada, T. Anan, K. Kurihara, K. Nishi, K. Tokutome, A. Kamei, and S. Sugou, “Room temperature low-threshold CW operation of 1.23 μm GaAsSb VCSELs on GaAs substrates”, Electron. Lett. 36, 637–638 (2000). http://dx.doi.org/10.1049/el:2000048310.1049/el:20000483Search in Google Scholar

[10] T. Anan, M. Yamada, K. Nishi, K. Kurihara,, K. Tokutome, A. Kamei, and S. Sugou, “Continuous-wave operation of 1.30 μm GaAsSb/GaAs VCSELs”, Electron. Lett. 37, 566–567 (2001). http://dx.doi.org/10.1049/el:2001040510.1049/el:20010405Search in Google Scholar

[11] Y.F. Lao, C.F. Cao, H.Z. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 mm vertical-cavity surface-emitting lasers”, Electron. Lett. 45, 105–107 (2009). http://dx.doi.org/10.1049/el:2009338010.1049/el:20093380Search in Google Scholar

[12] R.P. Sarzała, M. Wasiak, T. Czyszanowski, M. Bugajski, and W. Nakwaski, “Threshold simulation of 1.3-μm oxide-confined in-plane quantum-dot (InGa)As/GaAs lasers”, Opt. Quant. Electron. 35, 675–692 (2003). http://dx.doi.org/10.1023/A:102397720337310.1023/A:1023977203373Search in Google Scholar

[13] H. Wenzel and H.J. Wünsche, “The effective frequency method in the analysis of vertical-cavity surface-emitting lasers”, IEEE J. Quantum Elect. 33, 1156–1162 (1997). http://dx.doi.org/10.1109/3.59487810.1109/3.594878Search in Google Scholar

[14] R.P. Sarzała and W. Nakwaski, “Optimisation of the 1.3-μm GaAs-based oxide-con?ned (GaIn)(NAs) vertical-cavity surface-emitting lasers for their low-threshold room-temperature operation”, J. Phys. Condens. Mat. 16, S3121-S3140 (2004). 10.1088/0953-8984/16/31/009Search in Google Scholar

[15] A. Tomczyk, R.P. Sarzała, T. Czyszanowski, M. Wasiak, and W. Nakwaski, “Fully self-consistent three-dimensional model of edge-emitting nitride diode lasers”, Opto-Electron. Rev. 11, 65–75 (2003). Search in Google Scholar

[16] R.P. Sarzała, “Physical analysis of an operation of GaInAs/GaAs quantum-well vertical-cavity surface-emitting diode lasers emitting in the 1.3-μm wavelength range”, Opt. Appl. 35, 225–240 (2005). Search in Google Scholar

[17] C. Kopf, G. Kaiblinger-Grujin, H. Kosina, and S. Selberherr, “Reexamination of electron mobility dependence on dopants in GaAs”, Proc. 27th European Solid-State Device Research Conf., Stuttgart, 304–307 (1997). Search in Google Scholar

[18] N. Chand, T. Henderson, J. Klem, W.T. Masselink, R. Fischer, Y.C. Chang, and H. Morko, “Comprehensive analysis of Si-doped AlxGa1−x As (x = 0 to 1): Theory and experiments”, Phys. Rev. B30, 4481–4492 (1984). Search in Google Scholar

[19] T. Ishikawa, J. Saito, S. Sasa, and S. Hiyamizu, “Electrical properties of Si-doped AlxGa1–x As layers grown by MBE”, Jpn. J. Appl. Phys. 21, L675–L676 (1982). http://dx.doi.org/10.1143/JJAP.21.L67510.1143/JJAP.21.L675Search in Google Scholar

[20] J.D. Wiley, Semiconductor and Semimetals, Vol. 10, p. 162, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1975. Search in Google Scholar

[21] D.A. Anderson, N. Apsley, P. Davies, and P.L. Giles, “Compensation in heavily doped n-type InP and GaAs”, J. Appl. Phys. 58, 3059–3067 (1985). http://dx.doi.org/10.1063/1.33583110.1063/1.335831Search in Google Scholar

[22] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, World Scientific, Singapore/New Jersey, 1996. http://dx.doi.org/10.1142/978981283207810.1142/2046-vol1Search in Google Scholar

[23] S. Adachi, Properties of Semiconductor Alloys — Group-IV, III–V and II–V Semiconductors, John Wiley & Sons Ltd, 2009. http://dx.doi.org/10.1002/978047074438310.1002/9780470744383Search in Google Scholar

[24] T. Som, P. Ayyub, D. Kabiraj, N. Kulkarni, V.N. Kulkarni, and D.K. Avasthi, “Formation of Au0.6Ge0.4 alloy induced by Au-ion irradiation of Au/Ge bilayer”, J. Appl. Phys. 93, 903–906 (2003). http://dx.doi.org/10.1063/1.153035610.1063/1.1530356Search in Google Scholar

[25] D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2005. Search in Google Scholar

[26] E. Goldratt, “Experimental test of the Wiedmann-Franz law for indium”, J. Phys. F: Met. Phys. 10, L95–L99, 1980. http://dx.doi.org/10.1088/0305-4608/10/3/00110.1088/0305-4608/10/3/001Search in Google Scholar

[27] J.M. Pikal, C.S. Menoni, P. Thiagarajan, G.Y. Robinson, and H. Temkin, “Temperature dependence of intrinsic recombination coefficients in 1.3-μm InAsP/InP quantum-well semiconductor lasers”, Appl. Phys. Lett. 76, 2659–2661 (2000). http://dx.doi.org/10.1063/1.12643510.1063/1.126435Search in Google Scholar

[28] Y.G. Zhao, Y.H. Zou, X.L. Huang, J.J. Wang, Y.D. Qin, R.A. Masut, and M. Beaudoin, “Differential reflection dynamics in InAsxP1−x /InP (x ≤ 0.35) strained-multiple-quantum wells”, J. Appl. Phys. 83, 4430–4435 (1998). http://dx.doi.org/10.1063/1.36720210.1063/1.367202Search in Google Scholar

[29] S. Adachi, “GaAs, AlAs, and AlxGa1−x As: Material parameters for use in research and device applications”, J. Appl. Phys. 58, R1–R29 (1985). http://dx.doi.org/10.1063/1.33607010.1063/1.336070Search in Google Scholar

[30] A. Amith, I. Kudman, and E.F. Steigmeier, “Electron and phonon scattering in GaAs at high temperatures”, Phys. Rev. 138, A1270-A1276 (1965). 10.1103/PhysRev.138.A1270Search in Google Scholar

[31] M. Guden and J. Piprek, “Material parameters of quaternary III-V semiconductors for multilayer mirrors at 1.55 μm wavelength”, Model. Simul. Mater. Sc. 4, 349–357 (1996). http://dx.doi.org/10.1088/0965-0393/4/4/00210.1088/0965-0393/4/4/002Search in Google Scholar

[32] W. Nakwaski and M. Osiński, “Thermal analysis of GaAs/AlGaAs etched well surface-emitting double-heterostructure lasers with dielectric mirrors”, IEEE J. Quantum Elect. 29, 1981–1995 (1993). http://dx.doi.org/10.1109/3.23446110.1109/3.234461Search in Google Scholar

[33] S. Gehrsitz, F.K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−x As below the band gap: Accurate determination and empirical modelling”, J. Appl. Phys. 87, 7825–7837 (2000). http://dx.doi.org/10.1063/1.37346210.1063/1.373462Search in Google Scholar

[34] E. Gini and H. Melchior, “The refractive index of InP and its temperature dependence in the wavelength range from 1.2 μm to 1.6 μm”, Proc. 8th Int. Conf. on Indium Phosphide and Related Materials, New York, 594–597 (1996). Search in Google Scholar

[35] P. Chandra, LA. Coldren, and K.E. Strege, “Refractive index data from GaxIn1−x AsyP1−y films”, Electron. Lett. 17, 6–7 (1981). http://dx.doi.org/10.1049/el:1981000510.1049/el:19810005Search in Google Scholar

[36] C.H. Henry, LF. Johnson, R.A. Logan, and D.P. Clarke, “Determination of the refractive index of InGaAsP epitaxial layers by mode line luminescence spectroscopy”, IEEE J. Quantum Elect. 21, 1887–1892 (1985). http://dx.doi.org/10.1109/JQE.1985.107259710.1109/JQE.1985.1072597Search in Google Scholar

[37] H.J. Lee and S.S. Lee, “Measurement of the effective refractive indices of InGaAsP waveguides by silicon prism coupler”, J. Korean Phys. Soc. 22, 487–490 (1989). Search in Google Scholar

[38] C.H. Henry, R.A. Logan, F.R. Merrit, and J.P. Luongo, “The effect of intervalence band absorption on the thermal behaviour of InGaAsP lasers”, IEEE J. Quantum Elect. 19, 947–952 (1983). http://dx.doi.org/10.1109/JQE.1983.107195410.1109/JQE.1983.1071954Search in Google Scholar

[39] P. Enders, J. Piprek, and M. Woerner, “Intervalence band absorption in the AlGaAs mirror layers of long-wavelength vertical cavity lasers”, CLEO’97 11, 234–235 (1997). Search in Google Scholar

[40] D.I. Babić, J. Piprek, K. Streubel, R.P. Mirin, N.M. Margalit, D.E. Mars, J.E. Bowers, and E.L. Hu, “Design and analysis of double-fused 1.55-μm vertical-cavity lasers”, IEEE J. Quantum Elect. 33, 1369–1383 (1997). http://dx.doi.org/10.1109/3.60556010.1109/3.605560Search in Google Scholar

[41] C. Ciminelli, V.M.N. Passaro, F. Dell’Olio, and M.N. Armenise, “Quality factor and finesse optimization in buried InGaAsP/ImP ring resonators”, J. Eur. Opt. Soc.-Rapid. 4, 09032 (2009). http://dx.doi.org/10.2971/jeos.2009.0903210.2971/jeos.2009.09032Search in Google Scholar

[42] S.R. Johnson and T. Tiedje, “Temperature dependence of the Urbach edge in GaAs”, J. Appl. Phys. 78, 5609–5613 (1995). http://dx.doi.org/10.1063/1.35968310.1063/1.359683Search in Google Scholar

[43] R. Zallen and M.P. Moret, “The optical absorption edge of brookite TiO2”, Solid State Commun. 137, 154–157 (2006). http://dx.doi.org/10.1016/j.ssc.2005.10.02410.1016/j.ssc.2005.10.024Search in Google Scholar

[44] K. Nakagawa, H. Mikami, T. Ishikawa, Y. Shiraishi, A. Ejiri, H. Matsumoto, and S. Matsumoto, “VUV absorption spectroscopy of SiO2 thin film”, UVSOR Activity Report, 154–159 (2004). Search in Google Scholar

[45] O.K. Kim and W.A. Bonner, “Infrared reflectance and absorption of n-type InP”, J. Electron. Mater. 12, 827–836 (1983). http://dx.doi.org/10.1007/BF0265529610.1007/BF02655296Search in Google Scholar

[46] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys”, J. Appl. Phys. 89, 5815–5875 (2001). http://dx.doi.org/10.1063/1.136815610.1063/1.1368156Search in Google Scholar

Published Online: 2011-3-7
Published in Print: 2011-9-1

© 2011 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-011-0026-2/html
Scroll to top button