Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 27, 2014

Improve 3D laser scanner measurements accuracy using a FFBP neural network with Widrow-Hoff weight/bias learning function

  • J. Rodríguez-Quiñonez EMAIL logo , O. Sergiyenko , D. Hernandez-Balbuena , M. Rivas-Lopez , W. Flores-Fuentes and L. Basaca-Preciado
From the journal Opto-Electronics Review

Abstract

Many laser scanners depend on their mechanical construction to guarantee their measurements accuracy, however, the current computational technologies allow us to improve these measurements by mathematical methods implemented in neural networks. In this article we are going to introduce the current laser scanner technologies, give a description of our 3D laser scanner and adjust their measurement error by a previously trained feed forward back propagation (FFBP) neural network with a Widrow-Hoff weight/bias learning function. A comparative analysis with other learning functions such as the Kohonen algorithm and gradient descendent with momentum algorithm is presented. Finally, computational simulations are conducted to verify the performance and method uncertainty in the proposed system.

[1] D. Hoffmeister, C. Curdt, N. Tilly, and J. Bendig, “3D terres-trial laser scanning for field crop modelling”, Workshop on Remote Sensing Methods for Change Detection and Process Modelling, pp. 17–22, Cologne, 2010. Search in Google Scholar

[2] L.C. Básaca-Preciado, O.Y. Sergiyenko, J.C. Rodríguez-Quioñez, X. Garca, V.V. Tyrsa, M. Rivas-Lopez, D. Hernandez-Balbuena, P. Mercorelli, M. Podrygalo, A. Gurko, I. Tabakova, and O. Starostenko, “Optical 3D laser measurement system for navigation of autonomous mobile robot”, Opt. Laser Eng. 54, 159–169 (2014). http://dx.doi.org/10.1016/j.optlaseng.2013.08.00510.1016/j.optlaseng.2013.08.005Search in Google Scholar

[3] A. Pesci, G. Teza, E. Bonali, G. Casula, and E. Boschi, “A laser scanning based method for fast estimation of seismic-in-duced building deformations”, J. Photogrammetry and Remote Sensing 79, 185–198 (2013). 10.1016/j.isprsjprs.2013.02.021Search in Google Scholar

[4] B. Li, L. Jiang, S. Wang, H.-L. Tsai, and H. Xiao, “Femto-second laser fabrication of long period fibre gratings and applications in refractive index sensing”, Opt. Laser Tech. 43, 1420–1423 (2011). http://dx.doi.org/10.1016/j.optlastec.2011.04.01110.1016/j.optlastec.2011.04.011Search in Google Scholar

[5] Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fibre Bragg grating by using self-phase modulation and cross-phase modulation”, Appl. Opt. 51 3424–3430 (2012). http://dx.doi.org/10.1364/AO.51.00342410.1364/AO.51.003424Search in Google Scholar PubMed

[6] Z. Zang, “All-optical switching in Sagnac loop mirror containing an ytterbium-doped fibre and fibre Bragg grating”, Appl. Opt. 52, 5701–5706 (2013). http://dx.doi.org/10.1364/AO.52.00570110.1364/AO.52.005701Search in Google Scholar PubMed

[7] Z. Zhi-Gang and Y. Wen-Xuan, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fibre”, J. Appl. Phys. 109, 103–106 (2011). Search in Google Scholar

[8] Y. Arayici, “An approach for real world data modelling with the 3d terrestrial laser scanner for built environment”, Automat. Constr. 16, 816–829 (2007). http://dx.doi.org/10.1016/j.autcon.2007.02.00810.1016/j.autcon.2007.02.008Search in Google Scholar

[9] M. Rivas, O. Sergiyenko, and V. Tyrsa, “Machine vision: approaches and limitations”, in Computer Vision, Intech. pp. 395–428, 2008. 10.5772/6156Search in Google Scholar

[10] W. Flores-Fuentes, M. Rivas-Lopez, O. Sergiyenko, F.F. Gonzalez-Navarro, J. Rivera-Castillo, D. Hernandez-Balbuena, and J.C. Rodríguez-Quioñez, “Combined application of power spectrum centroid and support vector machines for measurement improvement in optical scanning systems”, Signal Process. 98, 37–51 (2014). http://dx.doi.org/10.1016/j.sigpro.2013.11.00810.1016/j.sigpro.2013.11.008Search in Google Scholar

[11] R. Nian, B. He, and A. Lendasse, “3D object recognition based on geometrical topology model and extreme learning machine”, Neural Comput. Appl. 23, 427–433 (2013). http://dx.doi.org/10.1007/s00521-012-0892-710.1007/s00521-012-0892-7Search in Google Scholar

[12] R. Shankarapillai, M. Ananthakrishnan, N. Rai, A. Mathur, and L. Mathur, “Periodontitis risk assessment using two artificial neural networks-a pilot study”, Int. J. Dental Clinics 2, 36–40 (2010). http://dx.doi.org/10.4103/2231-0754.8999510.4103/2231-0754.89995Search in Google Scholar

[13] K. Guo and G. Duan, “3D image retrieval based on differential geometry and co-occurrence matrix”, Neural Computing and Applications. doi:10.1007/s00521-012-12884. URL http://link.springer.com/article/10.1007/s00521-012-1288-4 Search in Google Scholar

[14] J.-B. Li, W.-H. Sun, Y.-H. Wang, and L.-L. Tang, “3D model classification based on nonparametric discriminant analysis with kernels”, Neural Comput. Appl. 23, 771–781 (2013). http://dx.doi.org/10.1007/s00521-011-0768-210.1007/s00521-011-0768-2Search in Google Scholar

[15] O. Sergiyenko, V. Tyrsa, D. Hernandez-Balbuena, M. Rivas Lopez, I. Rendon Lopez, and L. Devia Cruz, “Precise optical scanning for practical multi applications”, 34th IEEE Conf. Industrial Electronics, pp. 1656–1661, Orlando, 2008. Search in Google Scholar

[16] J.C. Rodríguez-Quioñez, O. Sergiyenko, V. Tyrsa, L. Basaca, and J. Hipolito, “Continuous monitoring of rehabilitation in patients with scoliosis using automatic laser”, Pan American Health Care Exchanges, pp. 410–414, Rio de Janeiro, 2011. 10.1109/PAHCE.2011.5871941Search in Google Scholar

[17] L. Basaca, L.C. Básaca, J. Rodríguez, O.Y. Sergiyenko, V. Tyrsa, W. Hernández, J.I Nieto Hipólito, and O. Starostenko, “3D laser scanning vision system for autonomous robot navigation”, IEEE Inter. Symp. on Industrial Electronics, pp. 1773–1779, Bari, 2010. Search in Google Scholar

[18] A. Rogalski, “History of infrared detectors”, Opto-Electron. Rev. 20, 279–308 (2012). http://dx.doi.org/10.2478/s11772-012-0037-710.2478/s11772-012-0037-7Search in Google Scholar

[19] T.A. Hamdalla, “Theoretical and artificial neural network modelling for the output power of irradiated erbium doped fibre amplifier”, Opt. Laser Tech. 49, 264–267 (2013). http://dx.doi.org/10.1016/j.optlastec.2013.01.00610.1016/j.optlastec.2013.01.006Search in Google Scholar

[20] S.K. Kumari, “A novel algorithm for uplink interference suppression using smart antennas in mobile communications”, Master’s thesis, Florida State University, 2004. Search in Google Scholar

[21] S. Haykin, Introduction to Adaptive Filters, Macmillan, 1985. Search in Google Scholar

[22] G. Lathen, T. Andersson, R. Lenz, and M. Borga, Momentum Based Optimization Methods for Level Set Segmentation, Springer SSVM, pp. 124–136, Norway, 2009. 10.1007/978-3-642-02256-2_11Search in Google Scholar

[23] J. Nocedal and S.J. Wright, Numerical Optimization, Springer, 1999. http://dx.doi.org/10.1007/b9887410.1007/b98874Search in Google Scholar

[24] X.S. Zhang, Neural Networks in Optimization, Springer, 2000. http://dx.doi.org/10.1007/978-1-4757-3167-510.1007/978-1-4757-3167-5Search in Google Scholar

[25] J.F. Bonnans, J.C. Gilbert, C. Lamarechal, and C.A. Sagastizabal, Numerical Optimization, Springer, 2006. Search in Google Scholar

[26] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters”, SIAM Journal on Applied Mathematics 11, 431–441 (1963). http://dx.doi.org/10.1137/011103010.1137/0111030Search in Google Scholar

[27] B.M. Wilamowski and H. Yu, “Improved computation for Levenberg Marquardt training”, IEEE T. Neural Networks 21, 930–937 (2010). 10.1109/TNN.2010.2045657Search in Google Scholar PubMed

[28] F. Huang, K. Fehrs, G. Hartmann, and R. Klette, “Wide-angle vision for road views”, Opto-Electron. Rev. 21, 1–22 (2013). http://dx.doi.org/10.2478/s11772-013-0079-510.2478/s11772-013-0079-5Search in Google Scholar

[29] A. Abba, F. Caponio, A. Geraci, and G. Ripamontii, “Non-linear least-squares in fpga devices for digital spectroscopy”, Nuclear Science Symposium Conf. Record, pp. 563–568, Orlando, 2009. 10.1109/NSSMIC.2009.5401957Search in Google Scholar

[30] J. Będkowski and J. Naruniec, “On-line range images registration with GPGPU”, Opto-Electron. Rev. 21, 52–62 (2013). http://dx.doi.org/10.2478/s11772-013-0074-x10.2478/s11772-013-0074-xSearch in Google Scholar

[31] T. Mathworksl, Neural Networks Toolbox Users Guide, The Mathworks, 2000. Search in Google Scholar

[32] A.L. Betker, T. Szturm, and Z. Moussavii, “Application of feedforward backpropagation neural network to center of mass estimation for use in a clinical environment”, Engineering in Medicine and Biology Society, Man, pp. 2714, 2003. Search in Google Scholar

[33] M. Sugiyama, M. Krauledat, and K.R. Muller, “Covariate shift adaptation by importance weighted cross validation”, J. Machine Learning Research, 985–1005, (2007). Search in Google Scholar

[34] J.C. Rodriguez-Quinonez, O. Sergiyenko, and F.F. Gonzalez-Navarro, L. Basaca-Preciado, and V. Tyrsa, “Surface recognition improvement in 3d medical laser scanner using Levenberg-Marquardt method”, Signal Process. 93, 378–286 (2013). http://dx.doi.org/10.1016/j.sigpro.2012.07.00110.1016/j.sigpro.2012.07.001Search in Google Scholar

[35] J.C. Rodríguez-Quioñez, O. Sergiyenko, L. Basaca-Preciado, V. Tyrsa, A.G. Gurko, M.A. Podrygalo, M. Rivas-Lopez, and D. Hernandez-Balbuena, “Optical monitoring of scoliosis by 3D medical laser scanner”, Opt. Laser Eng. 54, 175–186 (2014). http://dx.doi.org/10.1016/j.optlaseng.2013.07.02610.1016/j.optlaseng.2013.07.026Search in Google Scholar

[36] B. Huang, C. Yu, and B.D. Anderson, “Analysing localization errors in one dimensional sensor networks”, Signal Process. 92, 427–438 (2012). http://dx.doi.org/10.1016/j.sigpro.2011.08.00710.1016/j.sigpro.2011.08.007Search in Google Scholar

[37] J. Chen, X. Wu, M.Y. Wang, and X. Li, “3D shape modelling using a self developed hand-held 3D laser scanner and an efficient ht-icp point cloud registration algorithm”, Opt. Laser Techn. 45, 414–423 (2013). http://dx.doi.org/10.1016/j.optlastec.2012.06.01510.1016/j.optlastec.2012.06.015Search in Google Scholar

[38] D. García-San-Miguel and J. Lerma, “Geometric calibration of a terrestrial laser scanner with local additional parameters: An automatic strategy”, J. Photogrammetry and Remote Sensing 79, 122–136 (2013). http://dx.doi.org/10.1016/j.isprsjprs.2013.02.00710.1016/j.isprsjprs.2013.02.007Search in Google Scholar

[39] W.Y. Yan, A. Shaker, A. Habib, and A.P. Kersting, “Improving classification accuracy of airborne lidar intensity data by geometric calibration and radiometric correction”, J. Photogrammetry and Remote Sensing 67, 35–44 (2012). 10.1016/j.isprsjprs.2011.10.005Search in Google Scholar

[40] M.K. Transtrum and J.P. Sethna, “Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization”, J. Computational Physics, 2012. Search in Google Scholar

[41] O. Yu. Sergiyenko, “Optoelectronic system for mobile robot navigation”, Optoelectronics Instrumentation and Data Processing 46, 414–428 (2010). 10.3103/S8756699011050037Search in Google Scholar

[42] L. Lidner, O. Sergiyenko, V. Tyrsa, and P. Mercorelli, “An approach for dynamic triangulation using servomotors”, IEEE 23rd Inter. Symp. on Industrial Electronics, pp. 1926–1931, Istanbul, 2014. Search in Google Scholar

Published Online: 2014-9-27
Published in Print: 2014-12-1

© 2014 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 4.6.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-014-0203-1/html
Scroll to top button