Skip to main content
Log in

Fast UV detection and hydrogen sensing by ZnO nanorod arrays grown on a flexible Kapton tape

  • Published:
Materials Science-Poland

Abstract

ZnO nanorod arrays were grown on a flexible Kapton tape using microwave-assisted chemical bath deposition. High crystalline properties of the produced nanorods were proven by X-ray diffraction patterns and field emission scanning electron microscopy. Additionally, the photoluminescence spectrum showed higher UV peaks compared with visible peaks, which indicates that the ZnO nanorods had high quality and low number of defects. The metal-semiconductor-metal (MSM) configuration was used to fabricate UV and hydrogen gas detectors based on the ZnO nanorods grown on a flexible Kapton tape. Upon exposure to 395 nm UV light, the UV device exhibited fast response and decay times of 37 ms and 44 ms, respectively, at a bias voltage of 30 V. The relative sensitivities of the gas sensor made of the ZnO nanorod arrays, at hydrogen concentration of 2 %, at room temperature, 150 °C and 200 °C, are 0.42, 1.4 and 1.75 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu J., Wu W., Bai S., Qin Y., ACS Appl. Mater. Interfaces, 3 (2011), 4197.

    Article  CAS  Google Scholar 

  2. Zhai T., Li L., Wang X., Fang X., Bando Y., Golberg D., Adv. Funct. Mater., 20 (2010), 4233.

    Article  CAS  Google Scholar 

  3. Mahdi M.A., Hassan Z., Ng S.S., Hassan J.J., Bakhori S.K.M., Thin Solid Films, 520 (2012) 3477–3484.

    Article  CAS  Google Scholar 

  4. Zeng H., Xu X., Y Bando., Gautam U.K., Zhai T., Fang X., Liu B., Golberg D., Adv. Func. Mater., 19 (2009) 3165–3172.

    Article  CAS  Google Scholar 

  5. Akhavan O., Mehrabian M., Mirabbaszadeh K., Azimirad R., J. Phys. D:Appl. Phys., 42 (2009) 225305.

    Article  Google Scholar 

  6. Lim M.A., Lee Y.W., Han S.W., Park I., Nanotechnology, 22 (2011) 035601.

    Article  Google Scholar 

  7. Sun J., Liu F.-J., Huang H.-Q., Zhao J.-W., Hu Z.-F., Zhang X.-Q., Wang Y.-S., Appl. Surf. Sci., 257 (2010) 921–924.

    Article  CAS  Google Scholar 

  8. Kar J.P., Das S.N., Choi J.H., Lee T.I., Seo J., Lee T., Myoung J.M., Appl. Surf. Sci., 257 (2011) 4973–4977.

    Article  CAS  Google Scholar 

  9. Wang F., Wang C., Chen J., Yu Y., Mater. Lett., 66 (2012) 270–272.

    Article  CAS  Google Scholar 

  10. Liu K.W., Ma J.G., Zhang J.Y., Lu Y.M., Jiang D.Y., Li B.H., Zhao D.X., Zhang Z.Z., Yao B., Shen D.Z., Solid-State Electron., 51 (2007) 757–761.

    Article  CAS  Google Scholar 

  11. Bai S., Wu W., Qin Y., Cui N., Bayerl D.J., Wang X., Adv. Funct. Mater., 21 (2011) 4464–4469.

    Article  CAS  Google Scholar 

  12. Wen L., Wong K.M., Fang Y., Wu M., Lei Y., J. Mater. Chem., 21 (2011) 7090.

    Article  CAS  Google Scholar 

  13. Qin Y., Yang R., Wang Z. L., J. Phys. Chem. C, 112 (2008) 18734–18736.

    CAS  Google Scholar 

  14. Weintraub B., Deng Y., Wang Z.L., J. Phys. Chem. C, 111 (2007) 10162–10165.

    Article  CAS  Google Scholar 

  15. Hong J.I., J Bae., Wang Z.L., Snyder R.L., Nanotechnology, 20 (2009) 085609.

    Article  Google Scholar 

  16. Zhang M.Y., Nian Q., Cheng G.J., Appl. Phys. Lett., 100 (2012) 151902.

    Article  Google Scholar 

  17. Technical Data, http://www.tedpella.com/technote_html/16089-6-TN.pdf.

  18. Hassan J.J., Hassan Z., Abu-Hassan H., J. Alloys Compd., 509 (2011) 6711–6719.

    Article  CAS  Google Scholar 

  19. Hassan J.J., Mahdi M.A., Chin C.W., Hassan Z., Abu-hassan H., Appl. Surf. Sci., 258 (2012) 4467.

    Article  CAS  Google Scholar 

  20. Kang D.-S., Lee H.S., S Han. K., Srivastava V., Babu E.S., Hong S.-K, Kim M.-J., Song J.-H., Kim H., Kim D., J. Alloys Compd., 509 (2011) 5137–5141.

    Article  CAS  Google Scholar 

  21. Zeng H., Duan G., Li Y., Yang S., Xu X., Cai W., Adv. Func. Mater., 20 (2010) 561–572.

    Article  CAS  Google Scholar 

  22. Chai G.Y., Chow L., Lupan O., Rusu E., Stratan G.I., Heinrich H., Ursaki V.V., Tiginyanu I.M., Solid State Sci., 13 (2011) 1205–1210.

    Article  CAS  Google Scholar 

  23. Hu Y., Zhou J., Yeh P.H., Li Z., Wei T.Y., Wang Z.L., Adv. Mater., 22 (2010) 3327–3332.

    Article  CAS  Google Scholar 

  24. Bera A., Basak D., Appl. Phys. Lett., 93 (2008) 053102.

    Article  Google Scholar 

  25. Li Y., Valle F. Della, Simonnet M., Yamada I., Delaunay J.-J., Appl. Phys. Lett., 94 (2009) 023110.

    Article  Google Scholar 

  26. Mahdi M.A., Hassan J.J., Ng S.S., Hassan Z., Ahmed N.M., Physica E, 44 (2012) 1716–1721.

    Article  CAS  Google Scholar 

  27. Lupan O., Chai G., Chow L., Microelectron. Eng., 85 (2008) 2220–2225.

    Article  CAS  Google Scholar 

  28. Basu A.D. S., Mater. Chem. Phys., 47 (1997) 93–96.

    Article  CAS  Google Scholar 

  29. Hassan J. J., Mahdi M. A., Chin C. W., Abuhassan H., Hassan Z, J. Alloys Compd., 546 (2013) 107–111.

    Article  CAS  Google Scholar 

  30. Hassan J. J., Mahdi M. A., Chin C. W., Abuhassan H., Hassan Z., Physica E, 46 (2012) 254–258.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Hassan.

About this article

Cite this article

Hassan, J.J., Mahdi, M.A., Kasim, S.J. et al. Fast UV detection and hydrogen sensing by ZnO nanorod arrays grown on a flexible Kapton tape. Mater Sci-Pol 31, 180–185 (2013). https://doi.org/10.2478/s13536-012-0084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-012-0084-2

Keywords

Navigation