Skip to main content
Log in

Effect of temperature on the electrical properties of Zn0.95M0.05O (M = Zn, Fe, Ni)

  • Research Article
  • Published:
Materials Science-Poland

Abstract

We report here the structural and electrical properties of Zn0.95M0.05O ceramic varistors, M = Zn, Ni and Fe. The samples were tested for phase purity and structural morphology by using X-Ray diffraction XRD and scanning electron microscope SEM techniques. The current-voltage characteristics J-E were obtained by dc electrical measurements in the temperature range of 300–500 K. Addition of doping did not influence the hexagonal wurtzite structure of ZnO ceramics. Furthermore, the lattice parameters ratio c/a for hexagonal distortion and the length of the bond parallel to the c axis, u were nearly unaffected. The average grain size was decreased from 1.57 μm for ZnO to 1.19 μm for Ni sample and to 1.22 μm for Fe sample. The breakdown field EB was decreased as the temperature increased, in the following order: Fe > Zn > Ni. The nonlinear region was clearly observed for all samples as the temperature increased up to 400 K and completely disappeared with further increase of temperature up to 500 K. The values of nonlinear coefficient, a were between 1.16 and 42 for all samples, in the following order: Fe > Zn > Ni. Moreover, the electrical conductivity s was gradually increased as the temperature increased up to 500 K, in the following order: Ni > Zn > Fe. On the other hand, the activation energies were 0.194 eV, 0.136 and 0.223 eV for all samples, in the following order: Fe, Zn and Ni. These results have been discussed in terms of valence states, magnetic moment and thermo-ionic emission, which were produced by the doping, and controlling the potential barrier of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta T.K., J. Am. Ceram. Soc., 73 (1990), 1817.

    Article  Google Scholar 

  2. Glot A.B., J. Mater. Sci.-Mater. E., 17 (2006), 755.

    Article  Google Scholar 

  3. Senos A.M.R., Santos M.R., Moreira A.P., Vieira J.M., In Surface and Interfaces of Ceramic Materials, sced. Dufour L. C., Monty C., Petotervas G., NATO ASI Series, Kluwer Academic, London (1988), 553.

  4. Senos A.M.R., Vieira J.M., In Proceedings of the International Conference Third Euro-Ceramics, ed. Duran P., Fernandez J. F., Faenza Edit Rice Iberica Faenza S. L., 1 (1993), 821.

    Google Scholar 

  5. Senos A.M.R., PhD Thesis, University of Aveiro, Aveiro (1993).

  6. Levine J.D., Crit C.R.C., Rev. Solid State. Sci., 5 (1975), 597.

    Google Scholar 

  7. Bernasconi J., Strassler S., Knecht B., Klein H.P., Menth A., Solid. State. Commun., 21 (1977), 867.

    Article  Google Scholar 

  8. Einzinger R., Appl. Surf. Sci., 3 (1979), 390.

    Article  Google Scholar 

  9. Senos A.M.R., Baptista J.L., J. Mat. Sci. Lett., 3 (1984), 213.

    Article  Google Scholar 

  10. Glot A.B., Hogarth C.A., Bulpett R., Int. J. Electron., 65 (1988), 797.

    Article  Google Scholar 

  11. Mahan G.D., Levinson L.M., Philipp H.R., J. Appl. Phys., 50 (1979), 2799.

    Article  Google Scholar 

  12. In Proceedings of the Mater Res Soc Ann Meet., On Grain boundaries in Semiconductors, ed. by Pike G.E., Seager C.H., Leamy H.J., Elsevier (1982), 369.

  13. Kisi E., Elcombe M.M., Acta Crystallogr. C, 45 (1989), 1867.

    Article  Google Scholar 

  14. Özgüra Ü. et al., J. Appl. Phys., 98 (2005), 041301.

    Article  Google Scholar 

  15. Sedky A., Abu-Abdeen M., Abdel-azaz Almoulhem, Physica B, 388 (2007), 266.

    Article  Google Scholar 

  16. Deshpande V.V., Patil M.M., Ravi V., Ceram. Int., 32 (2006), 85.

    Article  Google Scholar 

  17. Houabes M., Bernik S., Talhi Ch., Bui A., Ceram. Int., 29(6) (2005), 783.

    Article  Google Scholar 

  18. Matsouka M., Jpn. J. Appl. Phys., 10(6) (1971), 736.

    Article  Google Scholar 

  19. Choon-Woo Nahm, Mat. Sci. Eng. B-Solid., 136(2–3) (2007), 134.

    Article  Google Scholar 

  20. Sedky A., E.El-Suheel E., Chin. Phys. B, 21(11) (2012), 116103.

    Article  Google Scholar 

  21. Ohashi N. et al., Jpn. J. Appl. Phys., 38 (1999), 5028.

    Article  Google Scholar 

  22. Oba F., Tanaka I., Adachi H., Jpn. J. Appl. Phys., 38 (1999), 3569.

    Article  Google Scholar 

  23. Mantas P.Q., Baptista J.L., J. Eur. Ceram. Soc., 15 (1995), 605.

    Article  Google Scholar 

  24. Han J., Mantas P.Q., Senos A.M.R., J. Eur. Ceram. Soc., 21 (2001), 1883.

    Article  Google Scholar 

  25. Carlson W.G., Gupta T.K., Appl. Phys., 53 (1982), 5746.

    Article  Google Scholar 

  26. Tsal Y.L., Huang C.L., Wei C.C., J. Mater. Sci. Lett., 4 (1985), 1305.

    Article  Google Scholar 

  27. Ayman Sawalha, Sedky A., Abu-Abdeen M., Physica B, 404 (2009), 1316.

    Article  Google Scholar 

  28. Guangqing Pei, Changtai Xia, Shixun Cao, Jungang Zhang, Feng Wu, Jun Xu, J. Magn. Magn. Mater., 302(2) (2006), 340.

    Article  Google Scholar 

  29. Wei S. H., Zounger A., Phys. Rev. B, 37 (1988), 8958.

    Article  Google Scholar 

  30. Martins J. L., Troullier N., Wei S. H., Phys. Rev. B, 43 (1991), 2213.

    Article  Google Scholar 

  31. Xu Y.N., Ching W. Y., Phys. Rev. B, 48 (1993), 4335.

    Article  Google Scholar 

  32. Vogel D., Krüger P., Pollmann J., Phys. Rev. B, 52 (1995), R14316.

    Article  Google Scholar 

  33. Zakharov O., Rubio A., Blasé X., Cohen M. L., Louie S. G., Phys. Rev. B, 50 (1994), 10780.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sedky.

About this article

Cite this article

Sedky, A., Mohamed, S.B. Effect of temperature on the electrical properties of Zn0.95M0.05O (M = Zn, Fe, Ni). Mater Sci-Pol 32, 16–22 (2014). https://doi.org/10.2478/s13536-013-0150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-013-0150-4

Keywords

Navigation