Skip to main content
Log in

The maximal operator on weighted variable Lebesgue spaces

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We study the boundedness of the maximal operator on the weighted variable exponent Lebesgue spaces L p(·) ω (Ω). For a given log-Hölder continuous exponent p with 1 < inf p ⩽ supp < ∞ we present a necessary and sufficient condition on the weight ω for the boundedness of M. This condition is a generalization of the classical Muckenhoupt condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Almeida and H. Rafeiro, Inversion of the Bessel potential operator in weighted variable Lebesgue spaces. J. Math. Anal. Appl. 340 (2008), 1336–1346.

    Article  MATH  MathSciNet  Google Scholar 

  2. E.I. Berezhnoi, Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces. Proc. Amer. Math. Soc., 127 (1999), 79–87.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Boza and J. Soria, Weighted Hardy modular inequalities in variable L p spaces for decreasing functions. J. Math. Anal. Appl. 348 (2008), 383–388.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. A. Cañestro and P. O. Salvador, Weighted weak type inequalities with variable exponents for Hardy and maximal operators. Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), 126–130.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Cruz-Uribe, L. Diening, and A. Fiorenza, A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9) 2, No 1 (2009), 151–173.

    MATH  MathSciNet  Google Scholar 

  6. D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. Preprint, 2008.

  7. D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, volume 215 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2011.

    Google Scholar 

  8. L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, No 8 (2005), 657–700.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Diening, Maximal function on Orlicz-Musielak spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657–700.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Diening, Lebesgue and Sobolev Spaces with Variable Exponent. Habilitation, University of Freiburg, 2007.

    Google Scholar 

  11. L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. No 2017 in Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2011; www.springer.com/mathematics/analysis/book/978-3-642-18362-1

    Book  Google Scholar 

  12. L. Diening and P. Hästö, Muckenhoupt weights in variable exponent spaces. Preprint, 2008.

  13. L. Diening and S. Samko, Hardy inequality in variable exponent Lebesgue spaces. Fract. Calc. Appl. Anal. 10, No 1 (2007), 1–18; http://www.math.bas.bg/~fcaa

    MATH  MathSciNet  Google Scholar 

  14. J. Duoandikoetxea, Fourier Analysis, Vol. 29 of Graduate Studies in Mathematics. AMS, Providence — RI, 2001.

    MATH  Google Scholar 

  15. D. E. Edmunds, V. Kokilashvili, and A. Meskhi, Two-weight estimates in l p(x) spaces with applications to Fourier series. Houston J. Math. 35, No 2 (2009), 665–689.

    MATH  MathSciNet  Google Scholar 

  16. T. Futamura, Y. Mizuta, and T. Shimomura, Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31 (2006), 495–522.

    MATH  MathSciNet  Google Scholar 

  17. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Vol. 116 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104.

    MATH  Google Scholar 

  18. P. Harjulehto, P. Hästö, and V. Latvala, Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254 (2006), 591–609.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Harjulehto, P. Hästö, andM. Pere, Variable exponent Sobolev spaces on metric measure spaces. Funct. Approx. Comment. Math. 36 (2006), 79–94.

    MATH  MathSciNet  Google Scholar 

  20. A. Karlovich, Semi-Fredholm singular integral operators with piecewise continuous coefficients on weighted variable Lebesgue spaces are Fredholm. Oper. Matrices 1 (2007), 427–444.

    MATH  MathSciNet  Google Scholar 

  21. V. Kokilashvili and A. Meskhi, Weighted criteria for generalized fractional maximal functions and potentials in Lebesgue spaces with variable exponent. Integr. Transf. Spec. Funct. 18 (2007), 609–628.

    Article  MATH  MathSciNet  Google Scholar 

  22. V. Kokilashvili, N. Samko, and S. Samko, Singular operators in variable spaces L p(·)(Ω, ρ) with oscillating weights. Math. Nachr. 280 (2007), 1145–1156.

    Article  MATH  MathSciNet  Google Scholar 

  23. V. Kokilashvili, N. Samko, and S. Samko, The maximal operator in weighted variable spaces L p(·). J. Funct. Spaces Appl. 5 (2007), 299–317.

    MATH  MathSciNet  Google Scholar 

  24. V. Kokilashvili and S. Samko, Singular integrals in weighted Lebesgue spaces with variable exponent. Georgian Math. J. 10 (2003), 145–156.

    MATH  MathSciNet  Google Scholar 

  25. V. Kokilashvili and S. Samko, Maximal and fractional operators in weighted L p(x) spaces. Rev. Mat. Iberoamericana 20 (2004), 495–517.

    MathSciNet  Google Scholar 

  26. V. Kokilashvili and S. Samko, Weighted boundedness in Lebesgue spaces with variable exponents of classical operators on Carleson curves. Proc. A. Razmadze Math. Inst. 138 (2005), 106–110.

    MATH  MathSciNet  Google Scholar 

  27. V. Kokilashvili and S. Samko, A general approach to weighted boundedness of operators of harmonic analysis in variable exponent Lebesgue spaces. Proc. A. Razmadze Math. Inst. 145 (2007), 109–116.

    MATH  MathSciNet  Google Scholar 

  28. V. Kokilashvili and S. Samko, The maximal operator in weighted variable spaces on metric measure spaces. Proc. A. Razmadze Math. Inst. 144 (2007), 137–144.

    MATH  MathSciNet  Google Scholar 

  29. T. Kopaliani, Infimal convolution and Muckenhoupt A p(·) condition in variable L p spaces. Arch. Math. 89 (2007), 185–192.

    Article  MATH  MathSciNet  Google Scholar 

  30. T. Kopaliani, On the Muckenchaupt condition in variable Lebesgue spaces. Proc. A. Razmadze Math. Inst. 148 (2008), 29–33.

    MATH  MathSciNet  Google Scholar 

  31. A. Lerner, On some questions related to the maximal operator on variable L p spaces. Trans. Amer. Math. Soc. 362, No 8 (2010), 4229–4242.

    Article  MATH  MathSciNet  Google Scholar 

  32. Q. Liu, Compact trace in weighted variable exponent Sobolev spaces W 1,p(x)(Ω;v 0,v 1). J. Math. Anal. Appl. 348, No 2 (2008), 760–774.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. Mashiyev, B. CÇekiç, F. Mamedov, and S. Ogras, Hardy’s inequality in power-type weighted L p(·)(0,∞) spaces. J. Math. Anal. Appl. 334, No 1 (2007), 289–298.

    Article  MATH  MathSciNet  Google Scholar 

  34. Y. Mizuta and T. Shimomura, Continuity of Sobolev functions of variable exponent on metric spaces. Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), 96–99.

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Musielak, Orlicz Spaces and Modular Spaces, Vol. 1034 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  36. A. Nekvinda, Embeddings between discrete weighted Lebesgue spaces with variable exponents. Math. Inequal. Appl. 10 (2007), 165–172.

    MATH  MathSciNet  Google Scholar 

  37. V. Rabinovich and S. Samko, Boundedness and Fredholmness of pseudodifferential operators in variable exponent spaces. Integral Equations Operator Theory 60 (2008), 507–537.

    Article  MATH  MathSciNet  Google Scholar 

  38. N. Samko, S. Samko, and B. Vakulov, Weighted Sobolev theorem in Lebesgue spaces with variable exponent. J. Math. Anal. Appl. 335 (2007), 560–583.

    Article  MATH  MathSciNet  Google Scholar 

  39. S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integr. Transf. Spec. Funct. 16 (2005), 461–482.

    Article  MATH  MathSciNet  Google Scholar 

  40. S. Samko, E. Shargorodsky, and B. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, II. J. Math. Anal. Appl. 325 (2007), 745–751.

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Samko and B. Vakulov, Weighted Sobolev theorem for spatial and spherical potentials in Lebesgue spaces with variable exponent. Dokl. Ross. Akad. Nauk 403 (2005), 7–10.

    MathSciNet  Google Scholar 

  42. S. Samko and B. Vakulov, Weighted Sobolev theorem with variable exponent. J. Math. Anal. Appl. 310 (2005), 229–246.

    Article  MATH  MathSciNet  Google Scholar 

  43. T. Tsanava, On the convergence and summability of Fourier series in weighted Lebesgue spaces with a variable exponent. Proc. A. Razmadze Math. Inst. 142 (2006), 143–146.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cruz-Uribe.

Additional information

Dedicated to Prof. Stefan Samko on the occasion of his 70th Anniversary

About this article

Cite this article

Cruz-Uribe, D., Diening, L. & Hästö, P. The maximal operator on weighted variable Lebesgue spaces. fcaa 14, 361–374 (2011). https://doi.org/10.2478/s13540-011-0023-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0023-7

MSC 2010

Key Words and Phrases

Navigation