Skip to main content
Log in

Fractional calculus of variations for a combined Caputo derivative

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We generalize the fractional Caputo derivative to the fractional derivative C D α,β γ , which is a convex combination of the left Caputo fractional derivative of order α and the right Caputo fractional derivative of order β. The fractional variational problems under our consideration are formulated in terms of C D α,β. γ The Euler-Lagrange equations for the basic and isoperimetric problems, as well as transversality conditions, are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, No 1 (2002), 368–379.

    Article  MathSciNet  MATH  Google Scholar 

  2. O.P. Agrawal, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J. Vib. Control 13, No 9–10 (2007), 1217–1237.

    Article  MathSciNet  MATH  Google Scholar 

  3. O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A 40, No 24 (2007), 6287–6303.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Almeida, A.B. Malinowska, D.F.M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string. J. Math. Phys. 51, No 3 (2010), 033503, 12 pp.

    Article  MathSciNet  Google Scholar 

  5. R. Almeida, D.F.M. Torres, Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22, No 12 (2009), 1816–1820.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Almeida, D.F.M. Torres, Leitmann’s direct method for fractional optimization problems. Appl. Math. Comput. 217, No 3 (2010), 956–962.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Almeida, D.F.M. Torres, Fractional variational calculus for nondifferentiable functions. Comput. Math. Appl. 61, No 10 (2011), 3097–3104.

    Article  MathSciNet  Google Scholar 

  8. T.M. Atanacković, S. Konjik, S. Pilipović, Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A 41, No 9 (2008), 095201, 12 pp.

    Google Scholar 

  9. D. Baleanu, Fractional variational principles in action. Phys. Scripta T136 (2009), Article Number: 014006.

  10. D. Baleanu, O.P. Agrawal, Fractional Hamilton formalism within Caputo’s derivative. Czechoslovak J. Phys. 56, No 10–11 (2006), 1087–1092.

    Article  MathSciNet  Google Scholar 

  11. D. Baleanu, A.K. Golmankhaneh, R. Nigmatullin, A.K. Golmankhaneh, Fractional Newtonian mechanics. Cent. Eur. J. Phys. 8, No 1 (2010), 120–125.

    Article  Google Scholar 

  12. D. Baleanu, S.I. Muslih, Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives. Phys. Scripta 72, No 2–3 (2005), 119–121.

    Article  MathSciNet  MATH  Google Scholar 

  13. N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete-time fractional variational problems. Signal Process. 91, No 3 (2011), 513–524.

    Article  MATH  Google Scholar 

  14. R. Brunetti, D. Guido, R. Longo, Modular structure and duality in conformal quantum field theory. Comm. Math. Phys. 156, No 1 (1993), 201–219.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Cresson, Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48, No 3 (2007), 033504, 34 pp.

    Article  MathSciNet  Google Scholar 

  16. R.A. El-Nabulsi, D.F.M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β). Math. Methods Appl. Sci. 30, No 15 (2007), 1931–1939.

    Article  MathSciNet  MATH  Google Scholar 

  17. R.A. El-Nabulsi, D.F.M. Torres, Fractional actionlike variational problems. J. Math. Phys. 49, No 5 (2008), 053521, 7 pp.

    Google Scholar 

  18. Fract. Calc. Appl. Anal., p ISSN 1311-0454, e ISSN 1314-2224, Vol. 1 (1998) — Vol. 13 (2010) at http://www.math.bas.bg/~fcaa; Vol. 14 (2011) at http://www.springerlink.com/content/1311-0454.

  19. G.S.F. Frederico, D.F.M. Torres, A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334, No 2 (2007), 834–846.

    Article  MathSciNet  MATH  Google Scholar 

  20. G.S.F. Frederico, D.F.M. Torres, Fractional conservation laws in optimal control theory. Nonlinear Dynam. 53, No 3 (2008), 215–222.

    Article  MathSciNet  MATH  Google Scholar 

  21. G.S.F. Frederico, D.F.M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217, No 3 (2010), 1023–1033.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Hilfer, Applications of Fractional Calculus in Physics. World Sci. Publishing, River Edge, NJ (2000).

    Book  Google Scholar 

  23. G. Jumarie, Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function. J. Appl. Math. Comput. 23, No 1–2 (2007), 215–228.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Jumarie, An approach via fractional analysis to non-linearity induced by coarse-graining in space. Nonlinear Anal. Real World Appl. 11, No 1 (2010), 535–546.

    Article  MathSciNet  MATH  Google Scholar 

  25. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    Google Scholar 

  26. M. Klimek, Stationarity-conservation laws for fractional differential equations with variable coefficients. J. Phys. A 35, No 31 (2002), 6675–6693.

    Article  MathSciNet  MATH  Google Scholar 

  27. A.B. Malinowska, D.F.M. Torres, On the diamond-alpha Riemann integral and mean value theorems on time scales. Dynam. Systems Appl. 18, No 3–4 (2009), 469–481.

    MathSciNet  MATH  Google Scholar 

  28. A.B. Malinowska, D.F.M. Torres, Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 59, No 9 (2010), 3110–3116.

    Article  MathSciNet  MATH  Google Scholar 

  29. A.B. Malinowska, D.F.M. Torres, Natural boundary conditions in the calculus of variations. Math. Methods Appl. Sci. 33, No 14 (2010), 1712–1722.

    Article  MathSciNet  MATH  Google Scholar 

  30. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993).

    Google Scholar 

  31. D. Mozyrska, D.F.M. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative. Carpathian J. Math. 26, No 2 (2010), 210–221.

    MathSciNet  MATH  Google Scholar 

  32. T. Odzijewicz, D.F.M. Torres, Fractional calculus of variations for double integrals. Balkan J. Geom. Appl. 16, No 2 (2011), 102–113.

    MathSciNet  MATH  Google Scholar 

  33. K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1974).

    Google Scholar 

  34. A.Yu. Plakhov, D.F.M. Torres, Newton’s aerodynamic problem in media of chaotically moving particles. Mat. Sb. 196, No 6 (2005), 111–160 (In Russian); transl. in EN: Sb. Math. 196, No 5–6 (2005), 885–933.

    MathSciNet  Google Scholar 

  35. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, CA (1999).

    Google Scholar 

  36. E.M. Rabei, B.S. Ababneh, Hamilton-Jacobi fractional mechanics. J. Math. Anal. Appl. 344, No 2 (2008), 799–805.

    Article  MathSciNet  MATH  Google Scholar 

  37. E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih, D. Baleanu, The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, No 2 (2007), 891–897.

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E (3) 53, No 2 (1996), 1890–1899.

    Article  MathSciNet  Google Scholar 

  39. B. Ross, S.G. Samko, E.R. Love, Functions that have no first order derivative might have fractional derivatives of all orders less than one. Real Anal. Exchange 20, No 1 (1994/95), 140–157.

    MathSciNet  Google Scholar 

  40. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Transl. from the 1987 Russian original, Gordon and Breach, Yverdon (1993).

  41. M.R. Sidi Ammi, R.A.C. Ferreira, D.F.M. Torres, Diamond-α Jensen’s inequality on time scales. J. Inequal. Appl. 2008, Art. ID 576876 (2008), 13 pp.

  42. V.E. Tarasov, Fractional vector calculus and fractional Maxwell’s equations. Ann. Physics 323, No 11 (2008), 2756–2778.

    Article  MathSciNet  MATH  Google Scholar 

  43. J.L. Troutman, Variational Calculus and Optimal Control. Second Ed., Springer, New York (1996).

    Book  Google Scholar 

  44. B. van Brunt, The Calculus of Variations. Springer, New York (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka B. Malinowska.

Additional information

This work was presented in part at the IFAC Workshop on Fractional Derivatives and Applications (IFAC FDA’2010), held in University of Extremadura, Badajoz, Spain, October 18–20, 2010.

About this article

Cite this article

Malinowska, A.B., Torres, D.F.M. Fractional calculus of variations for a combined Caputo derivative. fcaa 14, 523–537 (2011). https://doi.org/10.2478/s13540-011-0032-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0032-6

MSC 2010

Key Words and Phrases

Navigation