Skip to main content
Log in

An historical perspective on fractional calculus in linear viscoelasticity

Short survey

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The article provides an historical survey of the early contributions on the applications of fractional calculus in linear viscoelasticty. The period under examination covers four decades, since 1930’s up to 1970’s, and authors are from both Western and Eastern countries. References to more recent contributions may be found in the bibliography of the author’s book.

This paper reproduces, with Publisher’s permission, Section 3.5 of the book: F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press-London and World Scienific-Singapore, 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Bagley, Applications of Generalized Derivatives to Viscoelasticity. Ph. D. Dissertation, Air Force Institute of Technology (1979).

  2. R. L. Bagley and P.J. Torvik, A generalized derivative model for an elastomer damper. Shock Vib. Bull. 49 (1979), 135–143.

    Google Scholar 

  3. R. L. Bagley and P.J. Torvik, A theoretical basis for the application of fractional calculus. J. Rheology 27 (1983), 201–210.

    Article  MATH  Google Scholar 

  4. R. L. Bagley and P.J. Torvik, Fractional calculus — A different approach to the finite element analysis of viscoelastically damped structures. AIAA Journal 21 (1983), 741–748.

    Article  MATH  Google Scholar 

  5. M. Caputo, Linear models of dissipation whose Q is almost frequency independent. Annali di Geofisica 19 (1966), 383–393.

    Google Scholar 

  6. M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 13 (1967), 529–539 [Reprinted in Fract. Calc. Appl. Anal. 11, No 1 (2008), 4–14]; available at: http://www.blackwell-synergy.com/toc/gji/13/5.

    Article  Google Scholar 

  7. M. Caputo, Elasticità e Dissipazione. Zanichelli, Bologna (1969).

    Google Scholar 

  8. M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism. Pure Appl. Geophys. (PAGEOPH) 91 (1971), 134–147. [Reprinted in Fract. Calc. Appl. Analys. 10, No 3 (2007), 309–324; at http://www.math.bas.bg/~fcaa].

    Article  Google Scholar 

  9. M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids. Rivista del Nuovo Cimento (Ser. II) 1 (1971), 161–198.

    Article  Google Scholar 

  10. A. Gemant, A method of analyzing experimental results obtained from elastiviscous bodies. Physics 7 (1936), 311–317.

    Article  Google Scholar 

  11. A. Gemant, On fractional differentials. Phil. Mag. (Ser. 7) 25 (1938), 540–549.

    Google Scholar 

  12. A. Gemant, Frictional phenomena: VIII. J. Appl. Phys. 13 (1942), 210–221.

    Article  Google Scholar 

  13. A. Gemant, Frictional Phenomena. Chemical Publ. Co, Brooklyn N.Y. (1950).

    Google Scholar 

  14. A. Gerasimov, A generalization of linear laws of deformation and its applications to problems of internal friction. Prikl. Matem. i Mekh. (PMM) 12 No 3 (1948), 251–260 [in Russian].

    MathSciNet  MATH  Google Scholar 

  15. V. L. Gonsovskii and Yu.A. Rossikhin, Stress waves in a viscoelastic medium with a singular hereditary kernel. J. Appl. Mech. Tech. Physics 14, No 4 (1973), 595–597.

    Article  Google Scholar 

  16. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press and World Scienific, London — Singapore (2010); at http://www.worldscientific.com/worldscibooks/10.1142/p614.

    Book  MATH  Google Scholar 

  17. S. I. Meshkov, G.N. Pachevskaya and T.D. Shermergor, Internal friction described with the aid of fractionally-exponential kernels. J. Appl. Mech. Tech. Physics 7, No 3 (1966), 63–65.

    Article  Google Scholar 

  18. S. I. Meshkov, Description of internal friction in the memory theory of elasticity using kernels with a weak singularity. J. Appl. Mech. Tech. Physics 8, No 4 (1967), 100–102.

    Article  Google Scholar 

  19. S. I. Meshkov and Yu.A. Rossikhin, Propagation of acoustic waves in a hereditary elastic medium. J. Appl. Mech. Tech. Physics 9, No 5 (1968), 589–592.

    Article  Google Scholar 

  20. S. I. Meshkov, The integral representation of fractionally exponential functions and their application to dynamic problems of linear viscoelasticity. J. Appl. Mech. Tech. Physics 11, No 1 (1970), 100–107.

    Article  Google Scholar 

  21. P. G. Nutting, A new general law of deformation. J. Frankline Inst. 191 (1921), 679–685.

    Article  Google Scholar 

  22. P. G. Nutting, A general stress-strain-time formula. J. Frankline Inst. 235 (1943), 513–524.

    Article  Google Scholar 

  23. P. G. Nutting, Deformation in relation to time, pressure and temperature. J. Frankline Inst. 242 (1946), 449–458.

    Article  Google Scholar 

  24. Yu. N. Rabotnov, Equilibrium of an elastic medium with after effect. Prikl. Matem. i Mekh. (PMM) 12, No 1 (1948), 81–91 [in Russian].

    Google Scholar 

  25. Yu. N. Rabotnov, Creep Problems in Structural Members. North-Holland, Amsterdam (1969) [Engl. translation of the 1966 Russian edition].

    MATH  Google Scholar 

  26. Yu. N. Rabotnov, On the Use of Singular Operators in the Theory of Viscoelasticity. Moscow (1973), pp. 50. Unpublished Lecture Notes for the CISM course on Rheology held in Udine, October 1973 [http://www.cism.it].

  27. Yu. N. Rabotnov, Experimental Evidence of the Principle of Hereditary in Mechanics of Solids, Moscow (1974), pp. 80. Unpublished Lecture Notes for the CISM course on Experimental Methods in Mechanics, A) Rheology, held in Udine, 24–29 October 1974 [http://www.cism.it].

  28. Yu. N. Rabotnov, Elements of Hereditary Solid Mechanics. MIR, Moscow (1980) [Engl. transl., revised from the 1977 Russian].

    MATH  Google Scholar 

  29. Yu. A. Rossikhin, Dynamic Problems of Linear Viscoelasticity Connected with the Investigation of Retardation and Relaxation Spectra. PhD Dissertation, Voronezh Polytechnic Institute, Voronezh (1970) [in Russian].

    Google Scholar 

  30. Yu. A. Rossikhin, Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids. Appl. Mech. Review 63 (2010), 010701/1–12; at http://dx.doi.org/10.1115/1.4000246.

    Google Scholar 

  31. Yu. A. Rossikhin and M.V. Shitikova, Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Fract. Calc. Appl. Anal. 10, No 2 (2007), 111–121; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  32. Yu. A. Rossikhin and M.V. Shitikova, Applications of fractional calculus to dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Review 63 (2010), 010801/1–52.

    Google Scholar 

  33. G. W. Scott-Blair, Analytical and integrative aspects of the stressstrain-time problem. J. Scientific Instruments 21 (1944), 80–84.

    Article  Google Scholar 

  34. G. W. Scott-Blair, The role of psychophysics in rheology. J. Colloid Sci. 2 (1947), 21–32.

    Article  Google Scholar 

  35. G. W. Scott-Blair, Survey of General and Applied Rheology.Pitman, London (1949).

    Google Scholar 

  36. T. D. Shermergor, On the use of fractional differentiation operators for the description of elastic-after effect properties of materials. J. Appl. Mech. Tech. Phys. 7, No 6 (1966), 85–87; DOI 10.1007/BF00914347; at http://www.springerlink.com/content/pj26303041573u70/.

    Article  Google Scholar 

  37. M. Stiassnie, On the application of fractional calculus on the formulation of viscoelastic models, Appl. Math. Modelling 3 (1979), 300–302.

    Article  MATH  Google Scholar 

  38. P. J. Torvik and R.L. Bagley, On the appearance of the fractional derivatives in the behavior of real materials, ASME J. Appl. Mech. 51 (1984), 294–298.

    Article  MATH  Google Scholar 

  39. V.M. Zelenev, S.I. Meshkov and Yu.A. Rossikhin, Damped vibrations of hereditary — elastic systems with weakly singular kernels. J. Appl. Mech. Tech. Physics 11, No 2 (1970), 290–293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Mainardi.

About this article

Cite this article

Mainardi, F. An historical perspective on fractional calculus in linear viscoelasticity. fcaa 15, 712–717 (2012). https://doi.org/10.2478/s13540-012-0048-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0048-6

MSC 2010

Key Words and Phrases

Navigation