Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 6, 2009

Catalytic reduction of NO by CO over Pd — doped Perovskite-type catalysts

  • Mariana Khristova EMAIL logo , Srdjan Petrović , Ana Terlecki-Baričević and Dimitar Mehandjiev
From the journal Open Chemistry

Abstract

The perovskite type oxides (nominal formula LaTi0.5Mg0.5O3) with addition of Pd were prepared by annealing the ethanol solution of precursors in nitrogen flow at 1200°C and characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption of NO (NO-TPD). Their activity was evaluated for NO reduction by CO under stoichiometric and oxidizing conditions and for direct decomposition of NO. Pd substituted samples exhibited high NO reduction activity and selectivity towards N2. Nearly complete elimination of NO was achieved at 200°C. Two simultaneous reactions, NO reduction by CO and direct decomposition of NO as well as two forms of NO adsorption were observed on the surface of Pd substituted perovskite samples. The distribution of Pd in different catalytically active sites or complexes on at the catalyst surface may be responsible for the proceeding of two reactions: NO reduction with CO and direct NO decomposition.

[1] A.E. Giannakas, A.K. Ladavos, P.J. Pomonis, Appl. Catal. B: Environmental 49, 147 (2004) http://dx.doi.org/10.1016/j.apcatb.2003.12.00210.1016/j.apcatb.2003.12.002Search in Google Scholar

[2] A.A. Leontiou, A.K. Ladavos, P.J. Pomonis, Appl. Catal. A: General 241, 133 (2003) http://dx.doi.org/10.1016/S0926-860X(02)00457-X10.1016/S0926-860X(02)00457-XSearch in Google Scholar

[3] V.C. Belessi, C.N. Costa, T.V. Bakas, T. Anasatasiadou, P.J. Pomonos, A.M. Efstathiou, Catal. Today 59, 347 (2000) http://dx.doi.org/10.1016/S0920-5861(00)00300-X10.1016/S0920-5861(00)00300-XSearch in Google Scholar

[4] M. Iwamoto, H. Yahiro, T. Kutsuno, S. Bunyu, S. Kagawa, Bull. Chem. Soc. Jpn. 62, 583 (1989) http://dx.doi.org/10.1246/bcsj.62.58310.1246/bcsj.62.583Search in Google Scholar

[5] R.D. Zhang, A. Villanueva, H. Allamadari, S. Kaliaguine, J. Catal. 237(2), 368 (2006) http://dx.doi.org/10.1016/j.jcat.2005.11.01910.1016/j.jcat.2005.11.019Search in Google Scholar

[6] R.D. Zhang, A. Villanueva, H. Allamadari, S. Kaliaguine, Appl. Catal. B: Environmental, 64(3–4), 220 (2006) http://dx.doi.org/10.1016/j.apcatb.2005.10.02810.1016/j.apcatb.2005.10.028Search in Google Scholar

[7] R.D. Zhang, A. Villanueva, H. Allamadari, S. Kaliaguine, Appl. Catal. A: General 307(1), 85 (2006) http://dx.doi.org/10.1016/j.apcata.2006.03.01910.1016/j.apcata.2006.03.019Search in Google Scholar

[8] D. Peter, E. Garbovski, V. Perrichon, B. Pomier, M. Primet, Appl. Catal. A: General 205, 147 (2001) http://dx.doi.org/10.1016/S0926-860X(00)00551-210.1016/S0926-860X(00)00551-2Search in Google Scholar

[9] H. Tanaka, I. Tana, M. Uenishi, M. Kimura, K. Dohmae, In: N. Kruse, A. Frennet, J.-M. Bastin (Eds.), Topics in Catalysis (Kluwer Academic, New York, 2001) vol. 16/17, 63 10.1023/A:1016626713430Search in Google Scholar

[10] Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Nature 418, 164 (2002) http://dx.doi.org/10.1038/nature0089310.1038/nature00893Search in Google Scholar PubMed

[11] K. Zhou, H. Chen, Q. Tian, Zh. Hao, D. Shen, X. Xu, J. Molec. Catal. A: Chemical 189(2), 225 (2002) http://dx.doi.org/10.1016/S1381-1169(02)00177-210.1016/S1381-1169(02)00177-2Search in Google Scholar

[12] I. Twagirashema, M. Frere, L. Gengembre, C. Dujardin, P. Granger, Topics in Catalysis, 42–43, 171 (2007) http://dx.doi.org/10.1007/s11244-007-0173-310.1007/s11244-007-0173-3Search in Google Scholar

[13] C. Dujardin, I. Twagirashema, P. Granger, J. Phys. Chem. C 112(44), 17183 (2008) 10.1021/jp802993dSearch in Google Scholar

[14] P. Granger, C. Dujardin, J.-F. Paul, G. Leclercq, J. Mol. Catal. A: Chemical 228, 241 (2005) http://dx.doi.org/10.1016/j.molcata.2004.09.08110.1016/j.molcata.2004.09.081Search in Google Scholar

[15] L. Radev, M. Khristova, D. Mehandjiev, B. Samuneva, Catal. Lett. 112(3–4), 181 (2006) http://dx.doi.org/10.1007/s10562-006-0200-110.1007/s10562-006-0200-1Search in Google Scholar

[16] M. Khristova, D. Mehandjiev, Carbon 36(9), 1379 (1998) http://dx.doi.org/10.1016/S0008-6223(98)00125-010.1016/S0008-6223(98)00125-0Search in Google Scholar

[17] S. Petrovic, L. Karanovic, P.K. Stefanov, M. Zdujic, A. Terlecki-Baricevic, Appl. Catal. B: Environmental 58, 133 (2005) http://dx.doi.org/10.1016/j.apcatb.2004.11.02010.1016/j.apcatb.2004.11.020Search in Google Scholar

[18] D. Panayotov, M. Khristova, D. Mehandjiev, Appl. Catal. B: Environmental 34(1–2), 49 (1987) 10.1016/S0166-9834(00)82445-8Search in Google Scholar

[19] M. Kobayashi, Chem. Eng. Sci. 37, 393 (1982) http://dx.doi.org/10.1016/0009-2509(82)80091-210.1016/0009-2509(82)80091-2Search in Google Scholar

[20] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, Mn, 1992) Search in Google Scholar

[21] T.H. Fleish, R.F. Hicks, A.T. Bell, J. Catal. 87, 398 (1984) http://dx.doi.org/10.1016/0021-9517(84)90200-810.1016/0021-9517(84)90200-8Search in Google Scholar

[22] B.A. Sexton, A.E. Hugnes, K. Foger, J. Catal. 77, 85 (1982) http://dx.doi.org/10.1016/0021-9517(82)90149-X10.1016/0021-9517(82)90149-XSearch in Google Scholar

[23] A.M. Pisanu, C.E. Gigola, Appl. Catal. B: Environmental 20, 247 (1999) http://dx.doi.org/10.1016/S0926-3373(98)00110-610.1016/S0926-3373(98)00110-6Search in Google Scholar

Published Online: 2009-10-6
Published in Print: 2009-12-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-009-0065-4/html
Scroll to top button