Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 16, 2010

Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light

  • L. Gomathi Devi EMAIL logo , Nagaraju Kottam , S. Girish Kumar and K. Eraiah Rajashekhar
From the journal Open Chemistry

Abstract

Anatase TiO2 was prepared by sol-gel method through the hydrolysis of TiCl4. Ni2+ was doped into the TiO2 matrix in the concentration range of 0.02 to 0.1 at.% and characterized by various analytical techniques. Powder X-ray diffraction revealed only anatase phase for all the samples, while diffuse reflectance spectral studies indicated a red shift in the band gap absorption to the visible region. The photocatalytic activities of these photocatalysts were probed for the degradation of methyl orange under natural solar light. The photocatalyst with optimum doping of 0.08 at.% Ni2+, showed enhanced activity, which is attributed to: (i) effective separation of charge carriers and (ii) large red shift in the band gap to visible region. The influence of crystallite size and dopant concentration on the charge carrier trapping — recombination dynamics is investigated.

[1] P. Nigam, T. Robinson, G. Mcmullam, R. Marchant, Bioresour. Technol. 77, 247 (2001) http://dx.doi.org/10.1016/S0960-8524(00)00080-810.1016/S0960-8524(00)00080-8Search in Google Scholar

[2] C. Bauer, P. Jacques, A. Kalt, J. Photochem. Photobiol. A: Chem. 140, 87 (2001) http://dx.doi.org/10.1016/S1010-6030(01)00391-410.1016/S1010-6030(01)00391-4Search in Google Scholar

[3] D. Brown, B. Hamberger, Chemosphere 16, 1539 (1987) http://dx.doi.org/10.1016/0045-6535(87)90094-410.1016/0045-6535(87)90094-4Search in Google Scholar

[4] S. Chinwetkitvanich, M. Tuntoolvest, T. Panswad, Water. Res. 34, 2223 (2000) http://dx.doi.org/10.1016/S0043-1354(99)00403-010.1016/S0043-1354(99)00403-0Search in Google Scholar

[5] J. Yu, H. Yu, B. Cheng, J. Mol. Catal. A: Chem. 249, 135 (2006) http://dx.doi.org/10.1016/j.molcata.2006.01.00310.1016/j.molcata.2006.01.003Search in Google Scholar

[6] J. Yu, L. Zhang, B. Cheng, Y. Su, J. Phys. Chem. C 111, 10582 (2007) http://dx.doi.org/10.1021/jp070788910.1021/jp0707889Search in Google Scholar

[7] J. Yu, W. Liu, H. Yu, Cryst. Growth. Des. 8, 930 (2008) http://dx.doi.org/10.1021/cg700794y10.1021/cg700794ySearch in Google Scholar

[8] J. Yu, Y. Su, B. Cheng, Adv. Funct. Mater. 17, 1984 (2007) http://dx.doi.org/10.1002/adfm.20060093310.1002/adfm.200600933Search in Google Scholar

[9] J. Yu, G. Wang, B. Cheng, M. Zhou, Appl. Catal. B: Environ. 69, 171 (2007) http://dx.doi.org/10.1016/j.apcatb.2006.06.02210.1016/j.apcatb.2006.06.022Search in Google Scholar

[10] J. Yu, S. Liu, H. Yu, J. Catal. 249, 59 (2007) http://dx.doi.org/10.1016/j.jcat.2007.03.03210.1016/j.jcat.2007.03.032Search in Google Scholar

[11] L. Palmisano, L.V. Augugliaro, A. Sclafani, M. Schiavello, J. Phys. Chem. 92, 6710 (1988) http://dx.doi.org/10.1021/j100334a04410.1021/j100334a044Search in Google Scholar

[12] C. Martin, I. Maritn, V. Rives, L. Palmisano, M. Schiavell, J. Catal. 134, 434 (1992) http://dx.doi.org/10.1016/0021-9517(92)90333-D10.1016/0021-9517(92)90333-DSearch in Google Scholar

[13] L.G. Devi, S.G. Kumar, B.N. Murthy, K. Nagaraju, Catal. Commun. 10, 794 (2009) http://dx.doi.org/10.1016/j.catcom.2008.11.04110.1016/j.catcom.2008.11.041Search in Google Scholar

[14] L.G. Devi, B.N. Murthy, Catal. Lett. 125, 320 (2008) http://dx.doi.org/10.1007/s10562-008-9568-410.1007/s10562-008-9568-4Search in Google Scholar

[15] M. Zhou, J. Yu, B. Cheng, J. Hazard. Mater. 137, 1838 (2006) http://dx.doi.org/10.1016/j.jhazmat.2006.05.02810.1016/j.jhazmat.2006.05.028Search in Google Scholar

[16] Slamet, H. W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi, Catal. Commun. 6, 313 (2005) http://dx.doi.org/10.1016/j.catcom.2005.01.01110.1016/j.catcom.2005.01.011Search in Google Scholar

[17] L.G. Devi, G.M. Krishniah, Photochem. Photobiol. A: Chem. 121, 151 (1999) Search in Google Scholar

[18] A.W. Xu, Y. Gao, H.Q. Liu, J. Catal. 207, 151 (2002) http://dx.doi.org/10.1006/jcat.2002.353910.1006/jcat.2002.3539Search in Google Scholar

[19] J. Lin, J.C. Yu, J. Photochem. Photobiol A: Chem. 116, 63 (1998) http://dx.doi.org/10.1016/S1010-6030(98)00289-510.1016/S1010-6030(98)00289-5Search in Google Scholar

[20] A. Burns, G. Hayes, W. Li, J. Hirvonen, J.D. Demaree, I.S. Shah, Mater. Sci. Eng. B 111, 150 (2004) http://dx.doi.org/10.1016/j.mseb.2004.04.00810.1016/j.mseb.2004.04.008Search in Google Scholar

[21] M.F. Garcia, A.M. Arias, J.C. Hanson, J.A. Rodriguez, Chem. Rev. 104, 4063 (2004) http://dx.doi.org/10.1021/cr030032f10.1021/cr030032fSearch in Google Scholar PubMed

[22] J.F. Zhu, F. Chen, J.L. Zhang, H.P. Chen, M. Anpo, J. Photochem. Photobiol. A: Chem. 180, 196 (2006) http://dx.doi.org/10.1016/j.jphotochem.2005.10.01710.1016/j.jphotochem.2005.10.017Search in Google Scholar

[23] B. Tian, C. Li, F. Gu, H. Jiang, Y. Hu, J. Zhang, Chem. Eng. J. DOI:10.1016/j.cej.2009.02.030 10.1016/j.cej.2009.02.030Search in Google Scholar

[24] Z. Zhang, C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem. B 102, 10871 (1998) http://dx.doi.org/10.1021/jp982948+10.1021/jp982948+Search in Google Scholar

[25] X.H. Wang, J.G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, J. Phys. Chem. B 110, 6804 (2006) http://dx.doi.org/10.1021/jp060082z10.1021/jp060082zSearch in Google Scholar PubMed

[26] M.R. Hoffmann, W. Choi, A. Termin, J. Phys. Chem. 98, 13669 (1994) http://dx.doi.org/10.1021/j100096a00610.1021/j100096a006Search in Google Scholar

Published Online: 2010-2-16
Published in Print: 2010-2-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-009-0115-y/html
Scroll to top button